
7'AD-A139 770 SUBMICR ON SY STE MS ARCHITECTUREWLJI CALIFORNIA INST OF 1/1
TEC H PASADENA DEPT OF COMPUTER SCIENCE

JOHNSSON ET AL. 28 OCT 82 5052-TR-82 N00014-79-C-0597

UNCLASSIFILET FIG 92N L

EEEmohmo.mo.I
EhEEomhEEEEmhEE
EEEEohEEmhEshI
EEEEmhEEEEEmhE
smmhhhhmhmhhE

11112.2
, - 211111 1252.211111IIIn

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU 0Of STANDARDS-] 963-A

dw5

-r....

SUBMICRON SYSTEMS ARCHITECTURE

28 October 1982

SEMIANNUAL TECHNICAL REPORT

Edited and in part written by

Lennart Johnsson and Charles L. Seitz

Co-principal investigators: Charles L. Seitz, Carver A. Mead, Lennart

Johnsson

Other faculty: Randal Bryant, Jim Kajiya, Alain Martin, Martin Rem

Staff: Jim Campell, Vivian Davies, PLte Hunter, Michael Newton

Ph.D. students: Young-il Choo, Erik DeBenedictis, Peggy Li, Sheue-Ling
Lien, Mike Ullner, Dan Whelan, Doug Whiting

M.S. students: Bill Athas, Chao-Lin Chiang, Howard Derby, Eric Holstege,
Chris Lutz, Charles Ng, John Ngai, Craig Steele

Undergradute students: Steve Rabin, Don Speck D T IC
S ELECTE

APR 5 184 V
B

Computer Science

CALIFORNIA INSTITUTE of TECHNOLOGY

Ap weid fa Public reoseg
,~= Untmited

Table of Contents

1. Overview 1
1.1 Scope of this Report 1
1.2 Scope of the Research 1

1.3 Research Summaries 2
2. Architectural Experiments 9
2.1 The Tree Machine Project 11

2.1.1 Background: 11
2.1.2 Tree Machine Processor Design: 13
2.1.3 Layout: 14
2.1.4 Software: 15

2.1.4.1 Background 15
2.1.4.2 Upgrading the simulator: 16
2.1.4.3 New downloading algorithms 16
2.1.4.4 New version of the assembler and the simulator 16

2.2 Homogeneous Machine Project 17
2.2.1 Communication Modeling of Homogeneous Machines 17
2.2.2 The 6-cube Homogeneous Machine 18
2.2.3 The 10-cube Homogeneous Machine 19
2.2.4 Programming notations 20

2.2.4.1 General 20
2.2.4.2 Minos 20
2.2.4.3 Combinator Expression Reduction System 21

3. Design Disciplines 23
3.1 Self-Timed Design 23

3.1.1 A Self-timed Chip Set for Multiprocessor Communication 23
3.1.2 FIFO Buffering Transceiver 25
3.1.3 Self-timed System Notations 26

3.2 CMOS/SOS Technology 27
3.3 Testing 27
4. Design Tools, Workstations 31
4.1 Design Tools 31

4.1.1 Switch-Level SimuYhtion 31
4.1.2 Earl - An Integrated Circuit Design Language 32
4.1.3 A Hierarchical General Interconnect Tool 34

4.2 Workstations 35
5. Concurrent Architectures and Algorithms 37
5.1 Signal Processing and Scientific Computing 37

5.1.1 Concurrency in Linear Algebra Computations 37 i

5.1.1.1 Algorithms 37 H
5.1.1.2 Formal treatment of computational arrays 39

5.1.2 Computer Arithmetic 39
5.1.3 Synthetic Aperture Radar 40

5.2 Image Processing 41
5.2.1 Fingerprint Recognition 41
5.2.2 A Mechanism Describing the Construction of Cortical 43

Receptive Fields from the Center/Surround LGN Receptive
Fields

5.3 Computer Graphics 44
5.3.1 Ray Tracing Algorithms 44
5.3.2 High Performance Graphics Machines 45
5.3.3 Display Systems 46

6. Formal treatment of concurrent systems, programing languages 47
6.1 Notations for and Analysis of Concurrent Systems 47

ii

6.1.1 Concurrency in Computation 47
6.1.2 Concurrent Algorithms as Space-time Recursiin Equations 48
6.1.3 A Characterization oi Deadlock Free Resource 50

Contentions
6.1.4 A Structured Petri Net Approach to Concurrency 51

6.1.4.1 Hierarchical Nets 51
6.1.4.2 The Infinite Shuffle 51

6.2 Functional Programming Languages 52
6.2.1 Experiments with data abstractions 52
6.2.2 Type Inference of Late Binding Languages 53
6.2.3 An APL compiler 54

6.3 Theory of Computer Science 55
6.3.1 D-infinity as a Model of Omega-Order Intuitionistic 55

Logic
I. Publications, Technical Reports and Internal Memorandas (ARPA) 57

Accession For

NTIS GRAI

DTIC TAB I
Unannounced

ortc Distribution/

11, Availability Codes
\ --- / Avail and/or

Dist Special

- 1

1. Overview

\1.1 Scope of this Report
This document reports the research activities and results for the period
October 1 1981 - October 15 1982 under the Defense Advanced Research
Project Agency (ARPA) Submicron Systems Architecture Project.

'- he central theme of this research is the architecture and design of
CVLSI' systems appropriate to a microcircuit technology scaled to
submicron feature sizes, and includes related efforts in concurrent
computation and design tools

2
Much of the work at Caltech on advanced design tools and designer
workstations is supported separately within the industry- and
NSF-sponsored Silicon Structures Project (SSP), and is reported
elsewhere. Where there is some overlap in support between ARPA and SSP,
or where a graduate student may be supported by a fellowship, this
additional support is indicated in reporting that effort.

1.2 Scope of the Research
:The submicron systems architecture project is a carefully integrated
research effort, in which theory is closely tied to experiments in VLSI
architecture and design. The various aspects of the research tend to
support each other. To the extent that they can be separated, the
several research areas can be listed as follows:

- Architectures that can exploit the capabilities of VLSI technology.

- Concurrent algorithms for important and demanding computations.

- Theory of Concurrent computation applied to the representation of
algorithms and switching systems.

- Design disciplines that manage the complexity of VLSI systems.e '

- Design tools that check and enforce these disciplines.

Let us try to explain the close connection and common motivation of
these areas.

What is driving this research effort are the opportunities and problems
presented by VLSI technology. As microcircuit technology is scaled to
features at submicron dimensions, it presents an opportunity of a
dramatic reduction in cost/performance, represented by the cube-law
scaling of the switching energy Esw, and of an increase in the
complexity of chips. However, there are attendant problems in learning
how to exploit this opportunity.

Where communication is recognized even today as being expensive and
limiting in chip designs relative to earlier technologies, scaling makes
this problem worse. In order to be able to exploit the technology to
achieve performance gains, it is necessary to localize communication and
to free the system parts to operate concurrently. The VLSI
architectures that appear most promising to us are concurrent systems,

2

and require for their effective use programming styles and algorithms
that exploit concurrency and localize communication.

Managing the complexity of VLSI systems, both in numbers of elementary
parts and in the many levels of abstraction employed in a design,
requires a deliberate and rigorous structuring of the design process.
Design disciplines - or less formally: design styles, or methods - are
the theoretical foundations of practical design, and are both suggested
and tested by adhering to these disciplines in designs and design tools.

1.3 Research Su mmaries
The following is a summary of the research described in more detail in
sections 2 through 6 of this report, and which is in turn described in
complete detail in the technical reports cited and listed in section 7.

ARCHITECTURAL EXPERIMENTS

Currently, there are two architectural experiments involving
constructing working systems under way at Caltech: the Tree Machine
Project, and the Homogeneous Machine Project. Each involves both
hardware and software efforts.

The Tree Machine is an ensemble of deliberately very small processors,
each with a small amount of storage, and each with either 1 or 3
communication channels to allow message passing in a binary tree
communication plan. The scale of the individual element of the ensemble
is here so small that such a system built with 3-4 micron nMOS
technology allows 2 to 4 elements per chip, and for submicron technology
would allow 27 or 28 elements per chip.

The node processor for the Tree Machine is of our design, and
incorporates several other design experiments. The first iteration on
the design is just now approaching completion. It is a small (2M
lambda2) 16-bit processor, projected by simulation to be quite fast.
The structured design methodology of [Mead, Conway 80] is used, but the
electrical and physical design rules used as well as use of the clocks
are different. We hope to establish a new set of electrical design
rules as one of the results of this experiment.

The Tree Machine project also serves to verify that the model of
synchronization of processors via message passing can be efficiently
implemented. The communication protocol is built into the communication
channels of the Tree Machine processor.

Eventually, experience will also be gained from constructing a tree
machine with enough processors (e.g. 1023) that it achieves
considerable computational power. Software tools for writing,
assembling, loading, execution, and debugging of programs written in a
notation with restricted communication primitives are already in place
and used with a tree machine simulator.

The Homogeneous Machine is an ensemble of much larger processors, each
with sufficient storage to contain a run-time system for spawning and
garbage collecting processes in execution, storage management, routing
messages, and language support. The Homogeneous Machine also employ
strictly message passing communication, with no shared storage, and the

3

communication plan employed in current experiments is a Boolean n-cube
(hypercube) connecting ensembles of 2n processors using n communication
channels per processor. Where with today's technology it requires in
the order of 100 chips per element, this experiment is aimed at a size
of processing element that at submicron dimensions scales to 1 or 2
chips.

A 6-cube (64 processor) machine is currently under construction and
should be in use by the end of the calendar year, and a 2-cube (4
processor) prototype is running concurrent programs. A 10-cube (1024
processor) machine is being planned.

This experiment serves to gain additional experience in efficient
interprocessor communication, in distributed operating systems, and in
the implementation and use of high level concurrent languages. Several
programming experiments are underway, including the application of this
machine by collaborators in high-energy physics to scientific
computations that require high performance in matrix, differential
equation, and distant field computations.

DESIGN DISCIPLINES

Our objective of producing one or two exemplary and full scale
self-timed designs has been well accomplished by a family of
communication chips that support either one-to-many self-timed
communication over separable bus structures, or one-to-one self-timed
communication on bidirectional serial channels. This delay-insensitive
communication is accomplished between locally synchronous systems, such
as an ensemble of microprocessors. At another level this experiment has
been aimed at discovering a VLSI counterpart to the macromodules
developed at the Washington University Computer Systems Laboratory a
decade ago. Like macromodules, these communication chips allow an
1"electrically naive" person to assemble an arbitrarily large system
without getting into timing difficulties. However, where macromodules
are assemblies of registers, operators, storage, and control elements,
these communication chips allow one to assemble large systems whose
basic parts are microprocessor-based computers.

The design methods we have been experimenting with in the VLSI design
laboratory class over the past year have been focused on developing
simplified design rules for CMOS/SOS following the style of the Mead &
Conway rules for tiMOS, and on design for performance techniques for
nMOS. Design experience in CMOS/SOS has been accumulating through
student projects. Fabrication services for 5 micron CMOS/SOS for the
past year were arranged through Asea-Hafo in Sweden under a no-cost
arrangement, and enough test structures and projects have been checked
to confirm the basic design style. A new set of geometrical design
rules and electrical parameters for CMOS/SOS, based on an RCA 4 micron
process, has been developed and made available to the ARPA community
through MOSIS. A revised (to the new design rules) CMOS/SOS library and
design guide is in preparation.

In the area of testing, the definition and implementation of an
interactive test language has been completed. This language is based on
an abstractive model and mechanism for merging testing and
hierarchically structured design, and the testability strategies

...................

4

suggested by this language and model have been analyzed to determine the
expected complexity of test sequences. Because the language is based on
an hierarchical model, tests structured in this way can also reduce the
amount of data transfer between a host computer and a tester.

The test language is implemented by the FIFI test system. The FIFI test
system has two parts: a small experimental tester, and a (software) test
language interpreter.

DESIGN TOOLS AND WORKSTATIONS
Earl and MOSSIM are the principal design tools whose development and
maintenance is supported under this contract, as well as those currently
most heavily used in designs.

Earl is a programming language and associated interpreter for specifying
connectivity and geometry. Earl is based on a separated hierarchy model
for geometry, in which geometrical primitives such as wires and
transistors are specified strictly within a cell, and the composition of
cells to produce larger cells is specified by composition operators that
work by abutment. Earl's interpreter includes constraint solution for
determining the location of connection points, or other declared points
within a cell design, and adjust the cell geometry including stretching
the cell according to the way the cell is composed with other cells.

MOSSIM II is a switch-level simulator that originally was developed at
MIT. It has been modified and further developed by its creator, Randy
Bryant, now at Caltech. The current version, MOSSM II, is written in
Mainsail. It is available along with a set of programs for hierarchical
network specification, circuit extraction, and network comparison.
MOSSIM is based on a highly evolved model of switch logic in which nodes
may be determined in simulation to be logical 0 or 1, or undefined (X).
Different modes of simulation can be set to correspond to different
degrees of conservative choice about wire and switch delay. The models
employed by MOSSIM have accordingly been of interest also in
investigations of synchronous logic disciplines, speed-independence in
self-timed systems, and most recently in test pattern generation.

A new effort in design tools is underway to build a tool that can be
used at the final assembly stages of a chip design to route together
cells produced by tools oriented to geometry rather than
interconnection, either Earl or graphics-based tools. This effort is
based on a hierarchical model of chip assembly with progressive use of
additional metal layers.

In the development of a designer workstation the focus has been on a
fast display system. The idea is that a layer in a given representation
be represented by a bit plane, and that the different planes be updated
concurrently. A prototype system based on NEC's graphics processor has
been running for several months. Even though the architecture of the
NEC processor limits the performance of the prototype system, it is
useful and the experiment has been encouraging.

5

CONCURRENT ALGORITHMS
As the feature size of the technology continues to decrease and the
design and implementation tools evolve, the design of custom circuits of
significant complexity should become routine. A great proliferation in
architectures can be expected. The physical properties of the
implementation medium calls for concurrency in operation for its
efficient use. The efficiency of architectures for concurrent
computation depends largely on limiting and matching communication
patterns of the algorithm with that of the implementation medium, be it
a chip or programmable concurrent machine. By mapping algorithms in
"space", the sequencing enforced by a single processor is avoided in
favor of concurrency.

Most of our studies of architectures for submicron technology focus on
specific computationally demanding applications, and for which the
highest performance machines are relatively special purpose, but
"general" computing systems are considered as well. So, the main
research areas are somewhat divided by the implementation target:

- Architectures supporting concurrent programming at various levels,
and which can be used in addition for the applications below, but
at less than optimal performance.

- Architectures directly structured for concurrent algorithms with
application to scientific computing, signal and image processing,
and computer graphics.

The Tree Machine and Homogeneous Machine projects serve as vehicles for
studying architectures for concurrent programming languages and for
scientific computing. For the latter aspect close ties have been
established with the Applied Mathematics and High-energy Physics groups
at Caltech.

A set of concurrent algorithms for the standard computations in linear
algebra have been devised. The common characteristic of these
algorithms is that they can all be implemented in computational arrays
made up of processors containing a few registers, an arithmetic unit,
and very limited program store. The arrays are essentially SIMD
machines, even though not all processors always perform the same
instruction. An array can be made to perform a set of operations such
as matrix-vector, matrix-matrix multiplication and solving linear
systems of equations simply by routing the data in different ways
through the array. Program storage is only required in the control
unit. It should be noticed that the programmability is bound at design
time to a very limited set of operations.

The study of concurrent architectures for image processing has taken
fingerprint analysis as a sample application. Most of the effort has
been devoted to finding suitable encoding of fingerprint images and
concurrent algorithms for their analysis. A fingerprint image (ridges
and forks) is first encoded as a graph whereupon a comparative analysis
is made. The first step is performed iteratively in a serial raster
scan fashion using nearest neighbor operations. The core of operations
for the second phase deals with graph isomorphisms.

6

Ray tracing techniques have the capability to produce some of the most
realistic synthetic images. Ray tracing is often considered intractable
because of the amount of computation required. However, concurrent
algorithms for ray tracing techniques can be devised. The processing
elements can be kept simple and the amount of concurrency enormous. In
the past year concurrent implementations of ray tracing algorithms have
been investigated and new algorithms been devised. Machine
architectures have also been conceived for some algorithms that holds
promise to offer real-time performance. One such machine produces
shaded images of a scene using scan line techniques; another eliminates
hidden lines from a wire frame picture.

A display system that has rectangular area filling as a primitive has
been designed. Filled areas are rendered in constant time, i.e., an
O(N2) speed improvement over conventional pixel based displays. The
performance improvement for filling convex polygons is O(N). A chip
performing the area filling function has been designed, the first few
were returned from fabrication in early October, and they are currently
being tested.

FORMAL TREATMENT OF CONCURRENT SYSTEMS
The need for a formal treatment of concurrent algorithms and programming
models is far greater than for sequential systems, and is far more
difficult. Research in this area is still in an early stage, and there
is not yet a commonly held view of which models are "good" or even
correct at various levels of system representation. Models of a system
are often postulated at one level of abstraction without any assurance
that the model is consistent with lower level models and the technology.
In this research area alternative, even contradictory, approaches are

tolerated.

Two notations for the description of concurrent algorithms are being
explored. One has been strongly influenced by C. A. Hoare's CSP. A
semantic definition of the communication primitives has been proposed.
Channel variables are introduced and input commands in guards are
disallowed. The semantics of the communication primitives used is
captured by two axioms. A synchronization axiom formalizes the
synchronization properties of the primitives, and a communication axiom
formalizes the distributed assignment property of the primitives.

In CRYSTAL (Concurrent Representation of Your Space-Time ALgorithm) the
semantics is based on the fixed-point approach. A program is expressed
as a set of recursion equations. For a deterministic concurrent system
a single system of equations results. The semantics of such a system is
defined as the least solution of the equations. The semantics of
general concurrent systems is defined as the set of solutions of the set
of system equations. CRYSTAL has been applied to: transistor circuits,
gates, arithmetic units, sequential processors, large ensembles of
communicating processors such as systolic arrays performing matrix
multiplication, and tree machine algorithms. Both synchronous and
self-timed communication have been modeled.

Synchronization in concurrent system has been studied with the following
result:

7

- Two algorithms have been devised and verified to accomplish

distributed mutual exclusion: one applies for processors

interconnected as a ring, the other for processors interconnected
as a general graph.

- A theorem characterizing necessary and sufficient conditions for

freedom from deadlock in an ensemble of processors has been proved.

- A structured Petri net model, called Hierarchical Nets, has been
devised and studied.

Finally, a few experiments in developing functional or logic programming
languages are in progress. Fith (with several ideas from FORTH) is an

extremely small language which explores the applicability of data

abstraction and late binding to systems programming. ATP (inspired by
APL) attempts to include data abstraction in a functional programming
language. '81 attempts to fuse functional and logic programming.

B

9

2. Architectural Experiments

Chuck Seitz and Lennart Johnsson

The VLSI architectures that have been investigated at Caltech over the
longest period, and are accordingly at the stage where we may report
them as experimental machines at least under construction, are systems
that are ensembles of identical, concurrently operating, and regularly
interconnected elements. We refer to these systems as ensemble
architectures.

Ensemble machines may be classified by a crude taxonomy [Seitz 82a]
according to the size of the element that is replicated. The generality
of the system is determined largely by this element size, the
performance in the best case is linear with the number of elements, and
the cost varies as the product of the element size and number of
elements. At fixed cost, then, one encounters an inevitable competition
between generality and performance. It should be stated that our
priority and short-term objective in this research is to apply VLSI
technology to achieve t substantial advance in cost/performance in
computationally demanding tasks, rather than to try to achieve
generality. This greed for speed has at least the advantage that cost
and speed can be measured, and such "benchmarking" is an integral part
and measure of each effort.

Our earliest (1977) research on VLSI architectures at Caltech started
with very fine grain ensembles sometimes referred to as "smart
memories," and through the years the emphasis has evolved towards the
present research focus on three classes of ensemble machines with
increasingly larger element size:

- Computational Arrays, also called systolic arrays, although they
need not be synchronous. Typical element size is 0.1 to I million
square lambda, with the element capable of performing arithmetic
operations such as multiplication and addition on operands in
internal registers or communication ports. The applications that
have been studied include matrix, including sparse matrix, and
signal processing computations. Although these are wired algorithm
machines, the element will generally be parameterized or even
microprogrammable. Although we have not yet identified a
computational array for an experimental implementation, the study
of algorithms for this class of machine, taken as a computational
model, has been vital to the programming efforts of the two more
general classes, and is described in detail in section 5 of this
report.

- The Tree Machine, or other programmable ensembles with a very small
processor and associated program and data storage per node.
Typical element size is I to 10 million square lambda. It is
difficult to build an even marginally programmable machine with
element size below I million square lambda, and the machines in
this class are close enough to this limit that the programming
techniques are fairly low-level. The applications that have been
studied include those of less general ensembles, as well as several
graph and combinatorial problems. The tree machine element that

10

has been designed and is described below is about 4 million square
lambda, and so can be fabricated even in today's technology with
more than one element per chip. Although the tree interconnection
is too restrictive for some problems, it has the advantage of
allowing more processors per chip with a fixed number of pads.

- Homogeneous Machines are ensembles of processors that are

individually powerful enough to contain extensive run-time systems,
and typical element size ranges upward from 10 million square
lambda. Although the applications of these machines include all of
those of the less general classes, the study of applications here

focuses on programming methods that allow one to break out of the
rigid communication planning of the less general classes. It has
been a somewhat surprising result for us that even in building a
small version of such a machine from catalog parts, the
cost/performance gains over mainframe uniprocessors is substantial,
factors approaching 100 for the regular problems actually
benchmarked on this machine. The 64-processor Boolean 6-cube
machine being constructed (a 4-processor 2-cube prototype is being
used for program development and is running concurrent programs)
requires about 100 million square lambda (77 chips), and could be
expected to scale to 1 or 2 chips per element at 0.5 micron feature
size. In anticipating that multiple elements per chip is
infeasible in the scaling of this class, and that relatively high
communication bandwidth is desirable with less than regular
problems, a relatively richer but always wirable communication plan
of a Boolean n-cube has been chosen for current efforts.

What makes all of these structures such excellent candidates as VLSI

architectures is that (1) replication is exploited extensively, and (2)
the cost/performance can be projected to track with the cube-law scaling
of Esw (the switching energy) as feature size is reduced to submicron
dimensions. These structures also have in common a complete avoidance
of shared storage and its attendant scaling difficulties in favor of
message passing.

The problem that we see as being addressed in these efforts that is not

addressed by commercial developments in micromainframes is performance.
The fundamental problem is that the scaling of Esw is the product of a
quadratic scaling of area and power per function and an only linear
scaling of transit time. It is accordingly easier to exploit advances
in the microcircuit technology to reduce cost (power and area) than to
enhance performance. An analysis of scaling whole designs, including
their wires [Seitz 3863:DF:80], [Mead, Rem 81], indicates that there is
a point of diminishing returns in large designs where the scaling of
transit time is not reflected in system performance (Seitz 82a]. We
are accordingly forced to use concurrent machines, whether we want to or

not.

While the scope of the entire project includes several investigations of
programming models and languages for concurrent computation, there is no
pretense that the programmable classes of these experimental ensemble
machines can today be programmed as easily as conventional computers,
nor can they be applied efficiently to more than a narrow range of

regular problems.

Indeed, even using the best notational and theoretical tools at our
disposal, the design of efficient algorithms for and the programming of
these machines is difficult. However, the long list of regular and
almost regular problems that are now fairly well understood includes
many of the computationally demanding tasks in physics, geophysics,
chemistry, and applied mathemati.cs. The strong interest of our
colleagues in these particular disciplines at Caltech, and their
eagerness to invest their own research time and funds in rethinking
their algorithms to apply these machines to their own computationally
difficult problems, is some indication of the need for performance and
the range of application of these machines.

2.1 The Tree Machine Project

2.1.1 Background:

Chuck Seitz and Lennart Johnsson

The Tree Machine is an ensemble of concurrently operating, small, and
marginally programmable processors, each with its own storage, and
interconnected in a binary tree. This interconnection allows a
processor to send messages to its parent or to either of its
descendants.

Sally Browning's studies (Browning 3760:TR:80] of algorithms for and the
capabilities of this machine, completed in January 1980, was the
starting point for this project. In addition to being an interesting
structure in its own right, the regularity and testability
characteristics of this machine made it attractive to continue this
architectural experiment to make a working machine as a test vehicle for
talilding a large system based on chips of our own design.

After working out some details of the interprocessor communication
[Browning, Seitz 811, a small 12-bit processor was designed with a

4-bit path to program and data storage that was to be implemented on a
separate chip. Efforts in developing a software system, led by Peggy
Li, proceeded from this point concurrently with efforts in designing a
processor chip.

Two attempts to layout this processor were unsuccessful due to
weaknesses in design tools. The first layout attempt, by Chris Lutz,
Howard Derby, and Chris Kingsley, over the summer 1980, proved to exceed
the address and name space capabilities of a Simula-based extension to
LAP, but was the origin of the new design tool Earl [Kingsley
5021:TR:82], written during 1981.

A second attempt, by Peggy Li, to lay out the 12-bit tree machine
processor with more advanced tools also failed due to incompatible
design tools that were also unable to handle a design of this size. The
data path was specified using the language of Bristle Blocks. The
control part was designed as five interconnected PLA's, whose microcode
was written in ICLIC. This second design effort was given up in mid

April, 1982.

12

Finally, however, we have succeeded in designing a Tree Machine
processor node, one that is more ambitious than the original design, and
the project has clearly been an excellent stimulus and reality test for
our design capabilities and tools.

This project was conceived as an experiment with a regular
interconnection of nodes that are about as small as reasonably could be
programmed, in a tree structure that is easily wirable independent of
the number of nodes per chip, and which has good testability
characteristics. Once this chip is developed into a robust and
manufacturable design, what kind of architectural experiments does it
suggest?

As reported below, the layout of this processor is only 1400 by 1400
lambda, or 2 million square lambda, and could still be improved
somewhat. It should also be quite fast, much less than a 200 nsec clock
period according to SPICE simulations. The (3-transistor) dynamic RAM
array designed for it, with test chips sent to MOSIS in August, has a
cell size of about 250 square lambda per bit, plus typically 20% as much
additional space used for address logic and drivers. If a similar area,
about 2 million square lambda, is used for storage as for the processor,
the total storage would be around 400 16-bit words. Fixed subroutines,
loader, and other "system" software can be kept in ROM, which being
about 4 times denser would result in a system having about 256 words of
RAM, and about 512 words of ROM. This is quite a lot more storage than
originally anticipated, and about 4 times more than any of Sally
Browning's programs require.

At 2 micron lambda the processor is only 2.8 am on a side. This small
size means we can fit 2 processors with storage of similar size on a
single chip at 4 micron feature size, or

feature size (microns) 4 2.8 2 1.4 1 0.7 0.5

of processors/chip 2 4 8 16 32 64 128

with a constant 6 mm on a side chip. So, whatever feature size
fabrication we can get our hands on, we can use. A 2K chip system at 2
micron feature size would be a 16K processor, or 14 level tree, which
represents a lot of performance for special-purpose applications in a
small box. Such a machine could, for example, invert a 100 by 100
matrix of floating point numbers in less than a second.

The Tree Machine processor includes a (LSSD) scan path in the design
between the control PLA and the datapath. This feature would be
retained even in chips with many processors, but not strung together
serially as one might first expect. The chip LSSD input would go to the
LSSD input of all the processors in parallel. The chip LSSD output
would come from the LSSD output of one processor, and there would be a
second chip LSSD output that would indicate whether any other
processor's LSSD output disagreed with the first LSSD output. In this
way one can perform the initial test of all of the processors in
parallel, and this segment of the testing time is constant in the number
of processors per chip (or system).

13

The second phase of testing, performed after correct operation of the
processor control and sequencing is assured, is to test the
interprocessor communication paths. This test easily fits in the
storage of each processor, and has a time complexity of the log of the
number of processors, with a fairly small coefficient.

The third and final phase of testing -- storage, registers, arithmetic,
and other datapath operations -- is most efficiently accomplished by
downloading programs that run in all the processors at once. This test
also has a constant time complexity independent of the number of
processors.

So, we have here a case of an architecture whose testing scales so that
it is essentially constant between a chip with one processor and chips
with hundreds or thousands of processors and millions of bits of
storage.

2.1.2 Tree Machine Processor Design:
Chris Lutz (Advisor: Chuck Seitz)

A new Tree Machine processor was designed during the period from January
to June 1982 [Lutz 5036:DF:821. With smaller lambda than in 1980 and
with buried contacts now available, one could put both processor and
storage on a single chip, so many of the arguments in favor of a narrow
path to primary storage were obsolete. The new machine was accordingly
designed with a 16- rather than 4-bit path to storage, 16- rather than
12-bit words, and an instruction set similar to the original design but
based on a 16-bit word rather than a variable number of 4-bit nibbles.
The basic communication scheme from the original design was also
preserved.

The data path includes, working left to right across the floorplan: up
to 4 serial output ports, up to 4 serial input ports, 16 registers,
operand latches, function blocks, ALU, shifter, and address and flag
logic. There are eight addressing modes (the combination of
source/indirect, immediate/value and destination/indirect), and a 12-bit
address.

The control is microprogrammed and pipelined. Storage cycles are
completely overlapped with microprogram cycles and datapath operations.
At least one clock cycle in every instruction that would be otherwise
unused for a storage reference is used to refresh the dynamic storage
with a refresh address register internal to the processor. The
microcode also includes a very simple program loading initialization
bootstrap. An example of the degree of pipelining in the control is an
instruction that adds to register A the contents of the storage location
pointed to by register B and leaves the result in that storage location.
This instruction requires 5 clock or microcode cycles; two of these

cycles are overlapped with normal storage cycles and one is overlapped
with a storage refresh cycle and with an ALU operation.

Even though the instruction set is fairly rich and the control complex,
the microprogram PLA requires only 96 terms (implicants), folded into 48
rows in the PIA in order to better match the floorplan and PLA cell
layouts. The processor was simulated functionally at the microcode

14

level before layout was started, and more recently is been simulated at
the switch level with MOSSIM.

As indicated above, an LSSD scan path is included between the microcode
PLA and the data path, and allows the microcode contents and control of
the datapath to be tested efficiently.

2.1.3 Layout:
Chris Lutz, Don Speck, Steve Rabin, Pete Hunter (Advisor: Chuck Seitz)

A major effort to lay out the new design of the Tree Machine processor
was undertaken between July and October 1982. The area for this
complete processor, including 4 input and output channels, but not
including the I/0 pads, is only about 2 million square lambda, and the
clock period projected from SPICE simulations is less than 200 nsec.
The design was done by a team of 5 designers, and has required a total
of approximately 10 person-months so far.

Continued efforts in this design are concentrating on verification and
simulation in preparation for the November MOSIS nMOS run. Thus far the
simulations have revealed only simple and easily corrected errors in the
logic design and microcode. A future version of the layout will replace
the present static microcode PLA with a precharge PLA.

Two dynamic RAM test chip designs to provide on-chip storage for the
tree machine processor were completed and submitted to MOSIS for
fabrication in August.

A standard test strip for checking the tolerances of the bootstrap
driver circuits to process variations was designed and has been

submitted for all MOSIS nMOS runs since June 1982.

All designs are being done using Earl, a geometry tool originally
developed in connection with this project. Earl is described in more
detail in section 4 of this report. Other tools used in these designs
are SPICE, MOSSIM, an extractor, and a program to compare extracted
layouts with MOSSIM.ndl files.

The Tree Machine processor is also being used as a vehicle to develop
for nMOS technology a high performance design style in which clocks
switching between ground and a voltage in excess of VDD are driven
directly onto the chip, and supply much of the power required to operate
the chip. These "hot clock" signals are processed by bootstrap
clock-and circuits that preserve the clock voltage, effectively only
steering the clock signal to different control lines. This technique,
which is used both in the Tree Machine processor and in the address
decoding in its companion 3-transistor dynamic storage, is very
appropriate to the Tree Machine architecture, in that a single
high-performance (bipolar) clock driver can be shared by many nodes.

At least according to SPICE circuit simulations, this "hot clock"

technique has exceeded our most optimistic expectations both in
performance and in area savings. It is suggestive of a style that
overcomes some of the deficiencies of nMOS, particularly in scaled form.
The Tree Machine processor is designed for VDD - 5 volts and clocks
switching to 7 volts, and a 2 to 4 micron process. Clocked pass gate

159

structures do not produce degraded output signals, so full output swings
are maintained and normal 4:1 ratios may be used. The pass gate
structures in the ALU carry path do not produced degraded output signals
because the path is precharged. With a 1 micron nMOS process, the VDD
would be reduced to about 2.5 volts, which with ordinary design styles
would require tighter tolerances on many of the circuit parameters.
However, with a higher voltage direct clock switching between 0 and 4
volts, the tolerances required are not substantially tighter than those
in force today.

2.1.4 Software:

Pey-yun Peggy Li (Advisor: Lennart Johnsson)

(Currently also partially supported by an IBM fellowship.)

2.1.4.1 Background
A simulator for the Tree Machine has been in existence for several
months. It has been modified as the instruction set has been refined in
the simulations and layout of the processor.

The tree machine assembly language, [Li 4618:Th:81], contains notations
to define both the connection plan of the tree and the program of each
node. The programmer has the freedom to create a tree with arbitrary
fanout and arbitrary size. The assembler converts the logical tree into
a binary tree.

The three pass assembler performs the following tasks:

- convert the logical tree into a binary tree by inserting padding

nodes into proper positions,

- generate code for padding nodes so that they can serve as
communication channels between a node and its descendants,

- macro expansion and macro definition,

- generate the machine code for each node,

- provide the necessary information for the downloader.

The downloader is written in the Tree Machine assembly language. An
interactive user command interface was built up on top of the simulator.
The first version of the Tree Machine operating system was running in
June, 1981.

Over the past year, the major effort has been concentrated on the
following improvements:

16

2.1.4.2 Upgrading the simulator:
The simulator has been upgraded in the following sense

- Add a virtual memory feature to the local memory of each processor.

- Simplify the data structure of the simulator.

The purpose is to save the state and reduce the simulation time.

2.1.4.3 New downloading algorithms
The original downloading algorithm has a time complexity of O(N), where
N is the total number of nodes in the binary tree. A complexity of this
order is undesirable, since the downloading time increases exponentially
with the height of the tree. The downloader loads two files into the
tree, one is the module name file, which stores the name of each node in
the binary tree, the other is the module code file, which stores the
program code for all the different modules in the tree. The size of the
module name file is proportional to the total number of nodes of the
binary tree and it becomes the critical part as the tree grows.

In our first attempt to reduce the size of the module name file,
identical nodes occurred only once in the module name file. The number
of occurrences was specified by an integer preceding the name.
Parentheses were used to allow for the definition of subtrees. This
scheme reduces the size of the name file to be proportional to the
number of different nodes in the tree. For a very regular tree the name
file tends to be proportional to the height of the binary tree, a quite
satisfactory result. However, if the logical tree has an odd fanout,
the converted binary tree is very irregular and the size of the name
file can not be satisfactorily reduced. Another problem for this scheme
is that the format of the module name string is not unique. To find the
shortest string is an NP-complete problem.

In our second attempt the structure of the logical tree is given
directly. The loader in each node generates the padding nodes. Each
module is represented by a triple (the number of successive identical
nodes in each logic level, the name, and the fanout). With this second
scheme the size of the name file is three times the number of sets of
nodes that need to be loaded. The number of sets is at best equal to
the height of the logic tree, at worst equal to the total number of
nodes in the logic tree. The total downloading time is proportional to
the sum of the length of the name file and the height of the binary
tree.

2.1.4.4 New version of the assembler and the simulator
All the Tree Machine software, including the assembly language, the
assembler, and the simulator have been modified according to the
instruction set and the architecture for the current 16-bit machine.
The downloader and the padding procedures have been rewritten in the new
assembly language. A single processor option has been added into both
the assembler and the simulator, so that the assembler now can generate
the code for any specified processor in a tree and the simulator can
simulate the same processor. New cnmmands have been added into the
simulator to save and restore the memory image of the Tree Machine
into/from a virtual memory file. The user need not waste time to load

17

the code into the tree every time.

2.2 Homogeneous Machine Project

2.2.1 Communication Modeling of Homogeneous Machines
Dick Lang (Advisor, and reported by: Chuck Seitz)

The PhD thesis completed by Dick Lang in June 1982, "The Extension of
Object-Oriented Languages to a Homogeneous, Concurrent Architecture,"
(Lang 5014:TR:82] represents a substantial step in understanding both
the engineering and programming of homogeneous machines. As indicated
by the references below, the benchmarking by simulation that was
accomplished has provided a useful guide to many of the engineering
considerations for these machines, including interconnection topology,
necessary bit rate, packet size, and routing algorithms.

The programming model developed for its own sake and used for these
simulations is an idea that was "in the wind," namely, to use the
class-object programming paradigm as an approach to localizing data with
the programs that operate upon it, and to treat the act of invoking an
attribute of an object as a communication between spatially distributed
objects rather than as only a co-routine type of mechanism. Thesemantics of Simula are reinterpreted so that execution of a statement

such as "vec.sort;" sends a message to the object "vec" to sort itself.
Continued execution in the sending object, when no immediate result is
expected, is the basic mechanism for concurrency.

The essential constraint on the objects and message passing system is
that objects (unlike actors) are sequentialized, and therefore serve
also as critical regions, and that successive messages sent from a
particular source object arrive at the destination object in the order
in which they are sent. It is necessary also, of course, to eliminate
global variables. Some of the programming examples in this notation are
both valid sequential programs and valid concurrent programs.

If producer-consumer problems are to be represented, it is necessary to
include an extension to Simula referred to as a SELECT, and which allows
an object to determine from separate queues for each attribute which
attribute may next be executed, a function similar to the guarded
command in CSP.

The essential global process required in such a system is storage

management, including particularly garbage collection. A relatively
brute-force algorithm requiring a single loose synchronization
(supported in the hardware) was devised, verified, and simulated, with
the result that garbage collection on this distributed system requires
only a small fraction of the system performance, even in very large
homogeneous machines.

18

The simulation of several connection plans, chordal ring, tree, mesh,
and Boolean n-cube (with 3 different routing algorithms) revealed the
expected result that the most expensive of these connection plans, the
Boolean n-cube, was substantially superior at least for the models of
message locality derived from assumed object distributions ranging from
random to quite well optimized. Some of the results for meshes were
inconclusive due to deadlock, lacking any knowledge at the time of a
suitable deadlock avoidance routing algorithm. A very simple routing
algorithm is known for the n-cube, and is assured to avoid deadlock, and
the simulated performance of the system using this routing algorithm is
typically 50% to 70% that of higher performance but unsafe routing
algorithms.

Finally, this study revealed a great many problems that could not be
adequately studied by simulation, particularly questions concerned with
maintaining locality among object references, relocating objects from
congested areas, and locating previously relocated objects in a machine.
Questions of the performance of systems using these more ambitious
techniques will have to be answered by system building experiments on a
real homogeneous machine.

2.2.2 The 6-cube Homogeneous Machine
Erik DeBenedictis, Michael Newton (Advisor: Chuck Seitz)

A 4-processor (Boolean 2-cube) prototype of the 6-cube machine under
construction is now running concurrent programs. The node processor is
an Intel 8086 microprocessor with 8087 floating point chip, 128K bytes
of storage, and 6 queued and asynchronous bidirectional channels. The
machine is complete including the dedicated host and interfaces to other
department machines and to the high energy physics VAX.

Benchmarks for partial differential equation solution run on this 5 MHz
4-processor machine at 0.67 of a VAXII/780, confirming the benchmarks
for the single processor previously reported of 1/6 of a VAX11/780 per
node for 5 MHz operation, or 1/3 of a VAX11/780 for 10 MHz operation
(which awaits availability of 10 MHz 8087 parts).

Given this verification of the design, construction of the 64 processor
Boolean 6-cube is proceeding. A printed circuit board for the node
processor was layed out, prototype boards were constructed, and a
printed circuit board version of the node has been assembled and is
being checked out. None of the preliminary tests of the node have
revealed any problems, nor would any be expected since the net list for
routing the PCB was derived from the wirewrap net list.

Circuit and packaging parts are on order to complete the 6-cube machine
by the end of the year.

The resulting machine is projected to have 20 times the performance of a
VAX11/780 when running at 10 MHz, and twice the main storage, at about
1/5 of the cost, representing an improvement in cost/performance for
those problems for which it is suited of a full 2 orders of magnitude.
This entire machine will be 14.2 by 8.5 by 63 inches in size, and
consume 700 watts.

Programs for the 6-cube are being developed and tested on the 2-cube

19

both by a group in high energy physics and by groups in computer
science. Most program development is depending on the C compiler
developed by high energy physics, and on normal Intel 8086/8087 assembly
tools.

The physics group is concentrating on extremely regular matrix,
differential equation, and grid point problems, using a programming
style that we have come to refer to as "crystalline." Much of the effort
in computer science is currently centered on system software
development, and less regular applications such as combinatorial
problems.

2.2.3 The 10-cube Homogeneous Machine

Chuck Seitz

Discussions with several computer manufacturers have stimulated interest
in a joint project to design and build a 1024-processor Boolean 10-cube
machine, with the computer manufacturer supporting the project by
contributing the hardware. This approach appears to be an ideal way to
carry the concept forward, since it (1) allows continued software and
applications development in the university environment where it has
historically thrived, (2) places the logistic problems of building such
a machine in an industrial environment that is well organized for the
task, and (3) makes machines of this type commercially available, unlike
experiments such as the ILLIAC series, CM*, and others, that are or were
unique machines.

A 10-cube machine produced with a node processor based on one particular
manufacturer's 2-chip minicomputer would have a performance for regular
concurrent problems of several thousand Mips (million instructions per
second), or well in excess of 10 times the performance of the most
powerful general-purpose machines of today, and would have an (internal)
cost of about $1M.

In anticipation of the design of a larger homogeneous machine, a
communications chip specialized for serial communication in a Boolean
n-cube has been designed, and a first version submitted to MOSIS for
fabrication in August. This chip is a variant on an earlier design
previously reported of a self-timed chip set for multiprocessor
communication (see section 3).

The Homogeneous Machine communication chip includes 32 words by 16 bits
of FIFO in each direction, and implements on a single chip a highly
efficient delay-insensitive serial communication scheme. About half of
the board area of each node of the 6-cube machine is required to
implement its 6 communication channels in small- and medium-scale
integration chips. This custom chip replaces all of this "glue," and so
represents a substantial savings at each node, as well as increased FIFO
storage.

20

2.2.4 Programing notations

2.2.4.1 General
The performance of homogeneous machines depends on the separability of
the problem into many concurrent parts. Programming homogeneous
machines depends on the ability to express concurrent algorithms in a
way that is natural, convenient, rigorous, and implementable. Although
none of the more common programming models and notations allow the
representation of concurrency, there are many programming models that do
allow the expression of communication and concurrency, and deserve
study. The Homogeneous Machine is our vehicle and stimulus for these
studies.

What appear to us to be the most promising programming models are those
in which a program consists of a number of sequential processes that
communicate by explicit message passing. The models of this type range
from fairly simple models such as Hoare's CSP notation to
extraordinarily general approaches such as Hewitt's Actor model. Our
focus has been directed by the practical efforts in programming a real
system, and is between these two extremes. Dick Lang's study [Lang
5014:TR:82] of object-oriented programming notations for homogeneous
machines is typical of this middle road. While this approach is
believed to be promising, it would involve a major effort to reduce to
practice at this time.

One set of simpler approaches under early investigation are
generalizations to CSP in which communication is modeled as queued, as
it is in the actual machine. Such approaches can be implemented quickly
and easily in conventional programming notations by embedding, thus
allowing programming experiments under a model to be investigated
without the laborious process of building a complete language processor.

The fundamental difficulty observed in styles that use less restrictive
synchronization in communication than CSP is that while any number of
example programs can be written and checked by simulation, we have every
reason to believe that the complexity of large and very concurrent
programs will not be effectively managed by ad hoc methods. There are a
number of structured communication patterns, derived from self-timed
systems closures, that model weak synchronization in queue-connected
communication, but these also appear to be excessively restrictive.

Here, then, is a review of some of the programming experiments underway.

2.2.4.2 Minos
Craig Steele (Advisor: Randy E. Bryant)

Craig Steele was partially funded last year by a Silicon-Xerox
fellowship.

This work has concentrated on the specification of the MINOS
message-passing operating system for the hypercube processor ensemble,
to be implemented in an extended Pascal dialect.

MINOS is designed to provide a minimal but general framework for the
computations on the Hypercube. It is intended to support a model of
computation composed of many cooperating processes, of arbitrary

21

physical location, dynamically created and linked by a root process.
Multiprocessing on each physical processor is normal; multiple
computations are feasible.

The logical and physical aspects of process communication and port
interconnection are separated as much as possible in the proposed
implementation, to provide both reasonably convenient and intelligible
high-level language usages and efficient message transmission during
actual communications. Fairly complex initialization procedures are to
be effectuated by (generally remote) daemon "namer" processes.
Subsequent usage of those communication channels will be calls to the
local physical processor input/output kernel.

Though the initial implementation of MINOS will be oriented to explicit
static assignment of processes to physical processors, the mechanisms
employed anticipate the extension to a more dynamic system of
computation by elaboration of existing components, in particular the
namer and performance monitor.

MINOS will be implemented primarily in an extended Pascal, which will
also be available as an application language. This implementation
supports separate instruction and data address spaces, which is
prerequisite for code sharing and consequently greater numbers of
identical independent processes.

An embedded language allowing dynamic process creation and
interconnection is being defined for the Pascal system.

A Pascal cross-assembler for the 8086 was acquired, and is being
bootstrapped onto our VAX. The runtime system, including an interactive
debugger, will be customized for smooth interface with our operating
system, so that Pascal will be a well-supported user programming
language as well as a system language.

An alternative node design for homogeneous machines, with a separate
communications processor, has also been studied. A communications
processor specialized for serial communications in a binary N-cube
interconnect scales well to higher values of N due to its use of N+1
independent serial busses. Arbitration is accomplished serially as
well, requiring only two pins for the entire chip. The communication
processor will relieve the "working" processor of the node of any
overhead required for forwarding of indirectly routed messages.

2.2.4.3 Combinator Expression Reduction System
Bill Athas (Advisor: Chuck Seitz)

Caltech's efforts in experiments with Homogeneous Machines can be
described in one perspective as an attempt to more effectively match or
pair off processor area to storage area. If Homogeneous Machines can be
evaluated in this context, then the logical extreme is to attempt to
associate a processor with each storage element. This model has the
interesting feature, however implemented, that data does not leave
storage to be operated upon. Certain computational arrays and content
addressable storage are examples of computing based on this model. A
more readily programmable implementation of such a computing structure
may be approached by considering combinator expressions.

22

While most modern programming languages are derived from the von Neumann
machine model, the LISP language is derived from Church's lambda
calculus. There has been considerable interest in implementing LISP and
other applicative languages on non-von Neumann machines, for example,
reduction engines and data flow machines. Building upon this idea, a
result by M. Shonfinkel, which was brought to the attention of the
Computer Science community by David Turner [Turner 77] is that lambda
expressions can be translated into an alternate form called combinator
expressions. Turner describes how a LISP-like language can be
translated into combinators and then interpreted by a conventional
computer. Two benefits directly derived from this translation is that
there is no overhead for normal evaluation and the code is
self-optimizing.

The process of translating lambda calculus expressions into combinator
expressions requires abstracting variables to form a variable-free
notation. Evaluation is accomplished by application of a function to
arguments where the combinators are used to jockey arguments into
position. A crucial observation about the combinators is that they are
very simple in operation, for example the three essential combinators
are defined as follows:

S f g x--> f x (g x)
Kxy ->x
I x x

Since the combinators are rather simple, it could be feasible in a chip
implementation to associate a combinator primitive with each storage
element. Adhering to the structure of LISP, the elements would be
arranged as a binary tree.

All of the primitives needed to define a machine have been conceptually
resolved, the most complex being the paradoxical combinator 'Y', which
causes a mapping of the function domain back onto itself. This
combinator is dealt with by equipping each storage element with a stack.
The Y combinator causes a local recursion to as many adjoining elements
as necessary. The stack is also used for the pairing or CONS operator
in LISP. Through the facility of normal evaluation, the tree computing
structure may stop computing, even though there is more to be done.
Attempting to unload the resulting data structures from the machine, for
example to print a result, will cause further execution. Bear in mind
that the tree is not only the program but also the resulting data
structure.

In order to be able to experiment with combinator systems, a LISP to
combinator expression compiler and optimizer has been written in
UCI-LISP and is running on our DEC-System 20/60. Also working is a
combinator interpreter with debug facility written in Pascal. The system
is completely functional except the combinator needed to handle
multi-variable arguments does not work correctly. Once it is
operational, the system should be complete onto itself. When completed,
simulations will be done comparing it to Landin's SECD machine for LISP.

If the results are favorable, a number of other implementations will be
considered, including a suitable interpreter for a homogeneous machine
and a VLSI implementation of the storage element.

23

3. Design Disciplines

3.1 Self-Timed Design
Chuck Seitz

Both the theory and application of the self-timed design discipline
[Seitz 801 continue to be stimulated by design experiments in MOS

medium. Our objective of producing this year one or two exemplary and
LSI scale self-timed designs has been well realized by a family of
self-timed communication chips. These efforts are aimed at being able,
eventually, to specify as input to a "silicon compiler" the form of
message passing communication desired between subsystems, including
performance requirements, and have the compiler produce a suitable
layout for the interface chip, or cell within a very large chip. The
designs reported below already show a substantial degree of
parameterization.

Although internal speed-independence is not actually a requirement for
systems with self-timed interfaces, internal speed independence has been
the rule rather than the exception in these "exemplary" designs. Since
achieving perfect speed-independence is difficult and expensive, usually
both in area and performance, exceptions are made, and create a
recurrent difficulty of verifying the correct sequential operation of
these asynchronous networks. The principal tools for this verification
are either a form of sequence diagram or s-net [Seitz 70] or ternary
simulation with MOSSIM [Bryant 5033:TR:82], either of which is
satisfactory for verifying closed loop (causal) sequencing such as
"input change precedes output change," but cannot deal with open loop
(timing) sequencing. Investigations are continuing in this problem,
which is properly one of speed-independent rather than of self-timed
design.

3.1.1 A Self-timed Chip Set for Multiprocessor Communication
Douglas Whiting (Advisor: Charles L. Seitz)

Partially supported by an NSF fellowship.

An initial aim of this project [Whiting 5000:TR:82] was to determine
what type of self-timed building blocks, along the lines of Macromodules
[Clark 67], might be useful for the VLSI age. One of the first

conclusions reached was that since small synchronous processing systems
can be built cheaply and reliably in today's technology, any immediate
contributions from the self-timed discipline would have to come at a
higher level than that of a small system such as a microprocessor.
Where people start getting into timing and system integration
difficulties is in making multi-microprocessor systems, an application
directly connected with other research interests at Caltech, and that
apparently accounts for a significant and growing fraction of the
microprocessors produced today.

Self-timed signalling schemes have many advantages over synchronous
designs in connecting multiple processing units, since the composition
of self-timed components can be specified entirely by the
interconnection topology, without regard to the electrical parameters

I

24

that determine worst-case timing. Thus it is much simpler to construct
large computing systems if each subsystem has a speed-independent
interface.

Historically, the most significant attempt to define a speed-independent
processing framework was the macromodules. The internal logic of the
modules was implemented in standard ECL, mostly SSI, and each
macromodule was a small box which could be inserted into a rack.
Typical module functions were arithmetic operations, Boolean operations,
memory, registers, and control flow (forks, joins, etc.). The overall
system function was determined wholly by the topology of
interconnection, some of which was implicit in the placement within the
rack and the rest of which was explicitly determined by data and control
cables. One nice feature was the ease with which concurrent processing
could be implemented. No knowledge about timing constraints was needed,
and the only rule was, "if it fits, it works." Unfortunately, the
concept of macromodules does not map directly to one macromodule equals
one VLSI chip, because the functional level of a macromodule is quite
small compared with a modern chip, and the number of interconnections
required is very large.

More recently, various speed-independent bus schemes have been proposed
to allow independent processors to communicate with one another. An
example is the TRIMOSBUS, which allows for any sender on the bus to send
a message to one or more receivers, and wait for the last of them to
respond.

One product of this research is a bus communication technique which is
quite flexible and (for the most part) transparent to the processors. A
typical application is for message communication between
microprocessors. Each sender specifies a destination for its message,
and, since receivers may have shared aliases, there is the capability of
one-to-many communication.

The bus is speed-independent. On each data transmission cycle of the
message, the sender interface waits until all participants have
signalled receipt of the data before initiating the next cycle. By
employing such a speed-independent signalling scheme, any number of
ports may be added to the bus without loading problems. Sendership
arbitration is included as an integral part of the signalling scheme,
incurring very little overhead and providing a measure of fairness. The
protocol allows for one-to-many communication in which the sender must
wait for all receivers to respond to each datum transmitted. The width
of the data bus is arbitrary, and only three control wires are necessary
for normal transmission cycles.

The system design includes both an interface chip, and also an '" (for
filter, or forward) chip that allows the bus to be divided into several
local buses. The presence of an F chip is entirely transparent to the
processor software. Thus the bus topology may be reconfigured to match
the communication pattern and load using these chips as building blocks.

In addition to the goal of finding useful self-timed building blocks,
another purpose of this research was to produce an exemplary self-timed
design in MOS. The bus specifications were devised in a top-down
fashion: first, the global bus structure, then the signalling

25

conventions, and finally the implementation in MOS. However, the MOS
level design was made self-timed from the bottom up: only in a few
instances were concessions made to chip area by invoking a knowledge of
the actual timing involved. Much effort was put into verifying that the
design was truly speed-independent, and this experience has provided
insight into the type of tools needed for functional verification of
such designs.

From this complete logical design, a group of students in the VLSI
design laboratory course have produced a design of the interface chip,
unfortunately not quite complete in connecting the independent parts of
the design.

3.1.2 FIFO Buffering Transceiver
Charles H. Ng (Advisor: Charles L. Seitz)

The aim of this project (Ng xxxx:TR:82] is to develop the communication
channel needed to connect any two processors on a one-to-one basis
within a homogeneous machine. This chip is a direct descendant of the
bus communication chip described above.

Each processor of the homogeneous machine (qv section 2 above) must be
able to communicate by passing messages to other processors in the
ensemble. There are several ways in which messages can be passed, and
good reasons that the communication network of the homogeneous machine
is implemented with a large number of one-to-one channels.

Messages can be broadcasted on a contention network, such as the
ethernet, or on a bus by the sending processor to the entire system.
The destined receiving processors then pick up the messages. This
approach is severely limited by traffic congestion in large networks,
unless a mechanism is provided for separating the communication medium,
filtering out local messages, and forwarding non-local messages. Chips
for this kind of filtering and forwarding communication system have
recently been investigated by Whiting [Whiting 5000:TR:82], and his work
is greatly influenced the work reported here.

Instead of this "one-to-many" linkage, processors can be linked on a
"one-to-one" basis. Each processor has a number of channels to
communicate with its neighboring processors. In order to send a message
to a distant processor, the sending processor first sends the message to
a processor to which it is connected (a neighbor), and the neighboring
processor sends it to the next neighboring processor. This process
continues until the message is received by the destination processor.
This method calls for a routing algorithm for sending messages in order
to achieve high efficiency and to avoid deadlocks. Moreover, there are
the questions of network topology, required bit rates, packet sizes, and
buffering requirements. In answering these questions, we have been
guided largely by the simulations reported in [Lang 5014:TR:82).

The resulting chip, called a FIrst-in-first-out Buffering Transceiver
(FIBT), provides a full duplex communication channel between any two
processors. FIFO queues are provided for buffering data on each
communication channel. FIBT accepts data packets from the host
processor via a parallel data bus and serially sends them out to its

26

communication partner. FIBT handshakes with the processor by using
asynchronous interrupt signals.

Linkage between any two FIBT is accomplished by using only two wires.
Both data bits and handshaking signals are sent by these two lines. The
FIBT system is neither synchronous nor completely asynchronous; instead,
it is a system in which the clock signal is used as a frequency
reference whose phase is arbitrary, much as in RS-232 data
communication. The start and stop bits in the data establish the phase.

Finally, FIBT is implemented in nMOS technology. The design is
parameterized so that data packets of various sizes can be handled. The
layout of the chip is coded in Earl. Any member of the family of chips
can be produced by changing three basic parameters.

Three layouts have been done for the FIBT. The first layout is a
non-parameterized FIBT which carries two 16*32- bit FIFOs. The second
layout is a parameterized FIBT with the same FIFO size. The third
layout is done by changing the parameters of the second layout to
generate a new FIBT with two 8*10-bit FIFOs. The first layout took about
three man-months to do, and the second one took an additional man-month.
In contrast, the third one only took about one man-hour. With a little
extra work, a whole family of FIBTs can be generated. Finally, several
versions of the FIBT are being fabricated by MOSIS. We expect to see
these chips returned and tested soon.

3.1.3 Self-timed System Notations
Jo Ebergen (Advisor: Chuck Seitz)

A visiting graduate student from Eindhoven, Jo Ebergen, developed a
linearized version of the s-net notation [Seitz 70) for signals that
also parallels the test language developed by DeBenedictis [DeBenedictis
4777:TR:82]. This notation allows a concise statement of closure
demonstrations, for example:

Cl - [a:-, b:-l; 1-:x; a:-O, b:-O; 0-:x]

C2 - [x:-1, c:-; 1-:d; x:-O, c:-O; O-:d]

represents an interconnection of 2 2-input C-elements, both function and
domain (environment), with inputs a,b, output x of C1, and inputs x,c,
output d of C2, and

C3 - [a:-l, b:-1, c:-l; 1-:d; a:-O, b:-O, c:-O; 0-:d]

represents the function and domain of a 3-input C-element. The
composition (CI o C2) does not equal C3. This is correct, since the
domain of (Cl o C2) is broader than that of C3. However, because the
composition (CI o C2) o C3* - [1, where * (dual) represents exchanging
system and environment, or function and domain, and [I indicates
liveness, (CI o C2) is shown to be a valid implementation of C3. A new
proof of the weak conditions theorem [Seitz 80] was expressed in this
notation.

27

It is our hope that a generalization of this notation may be useful as a
message-passing programming notation as well as for signal-described
systems.

3.2 4OS/SOS Technology
Chuck Seitz

The inclusion of CMOS/SOS design as part of a renovation of the Caltech
VLSI design laboratory course [Seitz 82b] is now entering its third
year. In this full-year course the students individually design one
small CMOS/SOS and one nMOS project in the first quarter, and in groups
design one to several larger projects, thus far only nMOS, in the winter
and spring quarters. Although the students learn from the beginning to
do designs and layouts in both CMOS/SOS and nMOS, the initial emphasis
is in CMOS/SOS design, since it is somewhat simpler than nMOS, and can
be treated with a simple switching model. Because the CMOS/SOS designs
are the first ones done by the students, and the fabrication schedule
has been problematical, these designs have all been relatively small.

CMOS/SOS chips designed in previous years have been fabricated at Hughes
and Rockwell, with fabrication arranged by the Caltech Jet Propulsion
Laboratory, and at Asea Rafo (Sweden) under a no cost agreement. Some
of the chips returned have been tested, and have verified the basic
design style.

A trip to RCA by the MOSIS project leader, Danny Cohen, and Chuck Seitz
in July 1982 resulted in an agreement for RCA to provide COS/SOS
fabrication services through MOSIS. A new set of geometrical design
rules and electrical characterization of this CMOS/SOS process was
established in the discussions with RCA, and Chuck Seitz has prepared an
initial CMOS/SOS technology file for MOSIS with this information. The
first fabrication run is scheduled for mid-November, and the second in
February. If these runs go well, we expect to attempt some much larger
CMOS/SOS designs this; spring.

3.3 Testing
Erik DeBenedictis (Advisor: Charles L. Seitz)

The approach to testing that has been investigated has attempted and
largely succeeded in merging hierarchical structured design techniques
with testing [DeBenedictis 4777:TR:82J, [DeBenedicitis 821. This
approach tests a system by testing each of its parts and verifying the
connections between the parts.

A highly structured test language with abstractive capabilities
corresponding to common abstractive design practices has been defined.
The test language is not a general purpose language. Test language

28

procedures can be analyzed at the source code level and converted into a
form amenable to efficient execution on a high speed tester. Some of
the information extracted from the test language procedure is the length
of the test sequence and the exact effect of the arguments upon the
resultant output sequence. The highly structured nature of the test
language allows it to be interactive, as the FIFI test system
demonstrates.

The abstractive primitives of the test language correspond to the
process of hierarchical composition in design. The basic scenario of
the test language is as follows: 'Given a number of parts, and tests for
each of the parts, determine how to test the parts when they are
combined into a system.' The abstractive primitive is called an 'access
procedure' and describes how to translate a test for a part of a system
to a test that can be applied to the entire system.

A tester was constructed as a research effort into new tester design
styles. The tester was of a very small sort, based upon a
microprocessor. The data paths of a high performance tester were
implemented as a program for the microprocessor. This approach allowed
experimenting with different forms of data paths and instruction sets
without hardware changes. The cost of this flexibility is that the
tester is very low in performance.

In addition to being a research vehicle for tester design, the small
tester was a demonstration of a tester that could be distributed to
individual engineers (or students) at low cost. The small tester is
software compatible with a high performance tester (if one were to be
built) and could be used to interactively develop tests to be run on the
high performance tester. The development of test patterns is not an
activity that requires a high performance tester, but does require a
great deal of dedicated time with a tester. Using a $5,000 tester
instead of a $5,000,000 tester is desirable whenever possible.

A test language interpreter was written in SIMULA to run on a DEC-20.
The interpreter implements the complete test language, and is
interactive. The interpreter can provide several types of output: (1)
binary codes to drive the small tester, (2) an output form similar to
the test matrix input of commercial testers, and (3) a timing diagram
form suitable for documentation.

The characteristics of a tester that could execute the test language
efficiently have been explored. The design of such a tester is very
similar to commercially available testers. Some design differences are

apparent, however:

- Commercial testers are generally irregular. For example, a tester
may have 1024 vectors of high speed storage and no provision for
expanding the storage in a homogeneous manner. The tester design
proposed can generate arbitrarily long sequences of test vectors in
a homogeneous manner.

- Commercial testers are generally designed for a fixed timing
scheme. For example, a tester may provide a hardwired 1.5 phase
clock and be capable of running at only a fixed rate. The tester
design proposed allows clock signals to be generated like any other

29

signal, hence the number of clock phases is limited only by the
number of pins, and the timing for each test step should be
individually specifiable.

A design-for-testability strategy is implicit from our approach to

testing. The method is somewhat more abstract than conventional
design-for-testability strategies; it is a method that can be used to

describe many existing design-for-testability strategies. (All scan
path and combinations of scan path and other techniques can be
described, but self-test, syndrome test, and test methods relying upon
obscure electrical properties cannot.)

The design-for-testability strategy classifies parts into twc types:
composition systems and primitive parts. Composition systems can be

broken down into a collection of parts. Primitive parts cannot be
broken down. Tests for primitive parts must be generated by other
means. Typical primitive parts are combinational logic, PLAs, RAMs, and
ROMs. Test generation for these types of parts are known. The

necessary test information for each composition system consists of an
access procedure that can access each of the parts internal to it.

The test language allows tests to be generated in the same structured
manner that designs are generated today. Several persons can generate
test information each for a particular part of a design. The
communications between these persons is minimal, and is formalized by
the test language.

A catalog of testable parts and compositions could be created. Each
entry in the catalog would consist of (1) a logic-diagram specification
of the part or composition, (2) an access procedure for that part, and
(3) timing specifications for the inputs and outputs. A designer would
have testability of a system guaranteed if he used only testable parts
and the timing specifications of the parts matched over interfaces.

The FIFI test system demonstrates an interactive test system for design
characterization and the development of tests.

30

31

4. Design Tools, Workstations

4.1 Design Tools

4.1.1 Switch-Level Simulation

Randy Bryant

Partially supported by the Silicon Structures Project.

We have recently completed the implementation of MOSSIM II, [Bryant
5033:TR:82], switch-level simulator with greater generality and
capabilities than previous programs. This program is written in
Mainsail(TM) and is available for distribution, along with a set of
related programs for hierarchical network specification, circuit
extraction, and network comparison.

A switch-level simulator models an MOS circuit as a network of
transistor "switches" with node states 0, 1, and X (for unitialized or
invalid) and transistor state "open", "closed", and "indeterminate". It
can accurately model a variety of circuit structures such as
(bidirectional) pass transistors, static and precharged logic, busses,
and both static and dynamic memory. MOSSIM II has a very general
network model in which every transistor can be assigned a "strength" to
indicate its approximate conductance relative to other transistors which
may form part of a ratioed path, and every node can be assigned a "size"
to indicate its capacitance relative to other nodes with which it may
share charge. Almost all of the circuit structures seen in MOS digital
circuits today can be expressed in this network model. Furthermore,
parts of the system can be specified in terms of their functional
behavior in the form of a Mainsail module.

Networks for simulation can be derived from several sources. First, the
network description language, NDL, embedded in Mainsail, allows the user
to describe a network as a hierarchy of subnetworks with provisions for
generating unique names for every node and for collecting sets of nodes
into vectors. An NDL program is expanded into a network of transistors
prior to simulation. Second, a circuit extraction program based on
Clark Baker's program at MIT can derive the network directly from the
CIF mask description. We have enhanced Baker's program to handle
general wires and polygons for extracting curvilinear (Boston) geometry.
Circuit extraction provides a very reliable, if somewhat brute force
means of checking a design as it will actually be fabricated. However,
it is often difficult to debug a design this way, because most of the
node names are lost in the process, and the user has limited ability to
correct the errors in the design.

As an alternative to simulating a network derived by extraction, the
user can first design and debug a circuit using a more top-down
description such as in NDL, and then check the extracted circuit against
this description using the network comparison program MOSDIF. Our
program attempts to determine whether two transistor networks are
isomorphic using the O(n log(n)) automorphism partitioning algorithm
described by Kubo, Shirakawa, and Ozaki (ISCAS, 1979). This program can
return with one of three answers: 1. the networks are definitely
isomorphic, 2. the networks are definitely not isomorphic, or 3. no

32

mismatches were found, but an isomorphism could not be established.
This latter case generally happens only when the networks themselves
have automorphisms (e.g. the memory cells in a random access memory
array), which can be resolved by having the user specify a matching of
key nodes in the two circuits (such as the inputs.) Furthermore, the
user can forcibly match nodes which are not equivalent to help pinpoint
the differences in the two networks. This program works very fast
(about 10 seconds for a 2000 transistor network), and hence this process
of specifying matches and recomputing the partitioning can be performed
interactively.

The simulation capabilities of MOSSIM II include the ability to define a
clocking scheme; to look at or set the state of any node in the network;
to set breakpoints based on the network state; and to drive the
simulator by user-written Mainsail procedures. MOSSIM II can also apply
more stringent tests of a circuit beyond its normal unit delay,
switch-level model. It can use ternary simulation to detect potential
timing errors. Unlike conventional timing simulators, ternary
simulation tests whether the design will operate correctly for all
possible circuit delay parameters. Ternary simulation can be augmented
to check for potential errors caused by "dynamic charge sharing", i.e.
glitches caused by transient charge sharing effects. MOSSIM II can also
be run with charge storage disabled (for static circuits), with limits
placed on the charge retention time, and with checks for unrestored
logic levels (for CMOS). All of these tests use the X state to
represent various forms of bad behavior and rely on the relatively fast
and accurate X propagation algorithm of MOSSIM II to keep track of the
effect of a potential problem. Tests of this form help establish that a
design will function properly for a wide range of processing parameters
and operating condition - a task which is difficult to do by more
detailed circuit simulation.

4.1.2 Earl - An Integrated Circuit Design Language
Chris Kingsley (Advisers: Carver A Mead, Chuck Seitz)

Earl [Kingsley 5021:TR:82] is an integrated circuit design system with

several novel features, but its central characteristic is that it
supports a separated hierarchy design method. Earl has just two kinds
of cells: leaf cells contain only geometry, and composition cells
contain only other cells.

Earl has evolved from an attempt in 1980 to include port definitions and
constraint solving in an extension of LAP. Because the Simula base for
this tool was not sufficiently robust and had a very restricted name and
address space, the basic ideas were incorporated into a design language
which was implemented in C starting in September 1980. Earl has
continued to evolve from its first use in chip designs in the Spring of
1981, and with extensive student use to its present stable form by June
1982. Earl supports both nMOS and CMOS/SOS designs.

Numbers in Earl are complex, with the real and imaginary parts
representing x and y coordinates. Much of the flexibility of Earl as a
programming language results from its extensive use of lists, for
example, to group together related points. Earl supports all of the
usual mathematical and logical functions, and control structures.

33

Recent additions include file input and output, which is helpful for
programs such as PLA generators.

The Earl specification of a leaf cell includes:

- Cell declaration. Cells may have parameters, including list
parameters. Example: "cell placore(there);"

- Port declarations, and declaration of any internal points.
Example: "west group vdd, in2, gnd;"

- Constraints on the ports and internal points. Example: "ycon south
1-01 gnd 1>71 in2 1>31 vdd 1=01 north;" Notice that since Earl
treats x and y constraints separately, it is not really a
compacter. However, by extensive and tricky use of constraints one
can code leaf cells to accommodate variations in geometrical design
rules.

- Geometry specification. Example: "island wire in2, @+2; miss
(incont, -5); seg peon;"

The principal composition operators are called "horiz" and "vert", and
allow one to compose previously defined cells either horizontally or
vertically, with ports connected (if possible).

When Earl is asked to make the cif or to plot a cell, it first builds a
constraint graph based on the composition operators, with values
associated with the arcs from the constraint section of the leaf cell
definitions. The constraint solution, if there is one, determines the
geometrical coordinates of all of the declared ports and points. The
constraint solution will be to a locally minimal set of distances, and
circular constraints are harmless so long as there is a solution. Next,
the code associated with the geometry section of the cell definition is
executed for each instance type to generate the cif symbols. Then the
cif calling these symbols is built.

The Earl we use at Caltech normally has contacts defined at circular
symbols. This feature, together with the "miss" function noted by
example above, provides a basic facility for producing "Boston
geometry." There is otherwise nothing very Bostonian in Earl's
character; he is equally comfortable living in Manhattan or other
cities.

Earl has now been distributed to about 40 universities and companies,
and we have received many favorable comments about his successful
designs and robust character.

34

4.1.3 A Hierarchical General Interconnect Tool
John Y Ngai (Advisor: Chuck Seitz)

The complexity of VLSI circuits dictates a hierarchical approach to its
design and layout. The chip as a whole can be viewed as composed of
several simpler modules which in turn are composed of simpler modules.
The compositions recur until the modules arrived at are simple enough to
be understood, designed, and layed out comfortably. Such an approach
relies heavily on the ability to compose modules successively and
efficiently.

The geometrical or layout aspect of composition requires one to connect
the appropriate signal ports of the modules together to form a
super-module which may or may not has its own signal ports. Design
tools such as Earl [Kingsley 5021:TR:82] support orly connections by
abutment, which requires exact match of signal port sequence among the
modules. Stretching of modules to enforce coordinate matching of ports
is accomplished by constraint solving. Although this approach works
well at the lower and more regular levels of design, it is very poorly
suited to the last several assembly stages of a large chip, in which one
is trying to route a large number of signal wires, power, and clocks,
between signal ports that are geometrically very much constrained.

It is obviously very much easier at these higher levels of assembly to
connect signal ports by routing signals to the required port positions.
The goal of this project, then, is to produce a hierarchical general
module router. In addition, this routing tool is intended to explore
the general strategies for using multiple layer interconnections.

The work is somewhat different in emphasis than other work we are aware
of in routing, in particular:

-Routing is performed in raster order, based principally on local
information. This approach is an extension of a raster-order
routing technique developed and implemented for printed circuit
boards by Oestreicher and Seitz in 1971, and which performed
assignment, placement, and routing together with surprisingly good
results and high efficiency.

- Based on a model and analysis by Mead and Rem, (Mead, Rem 811, of
the use of additional thicker metal layers in VLSI circuits, one
can expect these upper layers to be used preferentially for
progressively more and more distant communication on a chip. A
designer may approach this optimal use of additional layers
naturally by restricting the lowest levels of design to the lowest
mask layers. For example, a set of cells restricted to diffusion,
poly, and first metal could be wired together by routing using
first and second metal. Notice that second metal can run over the
cells, and make contact to internal ports (first metal areas)
inside the cells, while first metal would be constrained to the
wiring areas between cells and could connect only to ports at the
periphery of cells. This same strategy can then be used to connect
such modules using only 2nd and 3rd layer metal.

What has been accomplished so far is:

35

- definition of a standard input specifications for the router, and
its interfaces to other design tools.

- design of the various algorithms that achieve the routing
requirements.

and the work in process is the implementation of a system that can be
put to experimental use this spring.

4.2 Workstations
Dan Whelan, (Advisors: Carver A. Mead, Jim Kajiya)

Partially supported by the Silicon Structures Project

Our work with CAD graphics systems has been based on the premise that
bit planes can be most effectively used to represent separate logical
layers such as those that might be used in a sticks system or even the
logical mask layers that are used to represent physical process layers.
If this is done properly, bit planes will represent disjoint logical
layers such that the update of these logical layers can be represented
as separate processes. This suggests that some parallelism can be
exploited by the graphics system in the update of these bit planes.
Therefore, we set about designing a low cost graphics system that
provides graphics processing capabilities on a per bit plane basis.

We currently have a prototype system running, [Whelan 4334:TR:81]. The
design is based on a graphics processor chip manufactured by the Nippon
Electric Company. The system is configured out of two types of boards.
The bit plane board implements four identical bit planes, each with 128K
bytes of RAM and a graphics processor which can be used to fill simple
areas and draw lines. With 128K of RAM, each bit plane can be treated
as a 1024 by 1024 bit map of which some 640 by 480 is visible. Hardware
panning can be used to view the rest of the display. Providing such
large amounts of off screen memory may prove extremely useful, since the
programmer can view the bit map as one large image or several smaller
disjoint images. The other type of board provides a 4096 by 24 bit color
map and also generates the system clocks. Both boards are Multibus
compatible and are being used with the SUN processor and Ethernet
boards.

Interestingly, even though the architecture of the NEC graphics display
controller chip severely limits its performance, the ability to use up
to 28 of them in parallel enables the system to perform better than a
large number of conventional systems. This architecture with the right
kind of display processor shows a lot of promise for the future.

36

37

5. Concurrent Architectures and Algorithms

5.1 Signal Processing and Scientific Computing

5.1.1 Concurrency in Linear Algebra Computations

Lennart Johnsson

5.1.1.1 Algorithms

Matrix and vector operations such as the computation of inner products,
matrix-vector products, matrix-matrix products, and the solution of
linear systems of equations are an important part in many signal
processing applications. These operations are classical in the area of
numerical linear algebra. A large number of algorithms have been
devised and analyzed, in particular for sequential machines. Concurrent
algorithms have also been devised and used for machines with a few
processing elements.

Algorithms, even of the concurrent type, have largely been devised with
the model that communication is for free. Data can be made available to
any processor without delay whenever needed. This model of a system is,
in our opinion, unrealistic. Different models of the relative cost of
communication to computation applies at different levels of system
modeling. What is a proper model at a given level is determined by
factors such as design discipline, architecture, and communication
protocols. Models used for different levels of system representation
have to be consistent with each other and with the technology used to
implement the system.

Our work on concurrent algorithms for linear algebra computations is
focused on the topology of algorithms, communication requirements, node
complexity, and the mapping of concurrent algorithms onto various
computational structures. The efforts during the last year have focused
on algorithms suitable for multiprocessor machines with a very limited
complexity and fanout. The cost of a communication is assumed to equal
that of a local memory reference. The node can be characterized as
having (in most cases) only a few registers for data and an arithmetic
unit. We call multiprocessor systems of this sort computational arrays.
They fit within the intuitive notion of systolic systems, [Kung,
Leiserson 801. In some of our earlier work on sparse matrices a
considerably more powerful processor and operating system is required.
In sparse matrix operations as well as in many problems of scientific
computing the management of dynamic data structures is crucial for
efficiency.

The term computational array is used to convey the notion that the
programmability is indeed very limited. The functionality is bound at
design time to a few, high level operations. The set of possible
operations for a computational array may well include matrix-vector and
matrix-matrix multiplication, and a few different methods for solving
linear systems of equations within the realm of the processor complexity
stated above. Instructions and/or data are pipelined through the array.
Even though broadcasting is undesirable in VLSI there is a trade-off in
the implementation of some of these algorithms. In algorithms having a
"turbulent" data flow, i.e., data flows in loops, pipelining may cause

38

processors to be idle for some cycles awaiting partial results to
traverse a loop, [Johnsson 4287:TR:81].

During the past year algcrithms have been devised for various array
configuratlons and computational problems. Part of the effort has been
devoted to the mapping of fully concurrent algorithms, i.e., algorithms
using the maximum number of processing elements for a given topology,
onto arrays having fewer nodes than the graph of the fully concurrent
algorithm. The mapping study has been restricted the case where the
array is isomorphic to a subgraph of the graph of the algorithm.

The particular methods of computational linear algebra for which
concurrent algorithms have been devised are: LU-decomposition based on
Doolittle's, Crout's, and Cholesky's methods, [Johnsson 82a],
QR-factorization based on Householder transformations, [Johnsson 82b],
and Given's rotations, [Johnsson 82c], the conjugate gradient method
for solving linear systems of equations, [Johnsson, 5040:TR:82], the
Discrete Fourier Transform as well as the Fast Fourier Transform for its
computation, [Johnsson, Cohen 82a], [Johnsson, Cohen 82b].

Most algorithms devised have the characteristic that the time complexity
of the concurrent algorithm equals 1/M times the complexity of its
sequential counterpart, where M is the number of processors in the
system. It is assumed that interprocessor communication is equivalent
to a reference to local storage. Householder transformations and the
conjugate gradient method like Gaussian elimination with partial or
total pivoting requires global communication in each major step of the
algorithm. Concurrency is limited by sequential requirements of the
algorithm, global communication and the restriction of the machine to
have nearest neighbor connection in a plane. The machine topology
studied has typically been a regular graph of degree 3, 4, or 6, but
Boolean N-cubes and trees with the leaves interconnected to a ring have
also been subject to investigation.

If a fully concurrent algorithm has to be instantiated partially in
time, partially in space, in order to fit on a given array, the task is
how to distribute the storage and computations among the processors of
the array. The total amount of data storage is essentially determined
by the storage required to describe the problem in the examples we
studied. The data storage requirement can be made independent of the
problem partitioning with suitable algorithms. The storage can either
be external to the array of computing elements, or distributed among the
processing elements, or a combination thereof. Block algorithms as well
as sweeping algorithms can be devised in either case. An example of a
block algorithm is given in [Johnsson, 4287:TR:81]. Sweeping algorithms
are described in the same report and [Johnsson, 5040:TR:821.

39

5.1.1.2 Formal treatment of computational arrays
The formal description of concurrent algorithms, and the verification of
their correctness is of considerable importance. Our attempt to a
formal treatment of concurrent algorithms aimes at algorithms that are
typically described in a mathematical notation, and that are feasible
for a direct implementation in hardware. This effort is carried out in
cooperation with Danny Cohen at USC/ISI. A notation that explicitly
models storage is used. The notation is of the traditional, mathematical
variety, but expressions in the notation can be given an interpretation
in the implementation domain. Algebraic transformations of expressions
in the notation can be carried out in the usual manner in order to
derive implementations of different characteristics that are guaranteed
to be correct.

Control signals are modeled in the same manner as data flow. Operations
on control signals are described in the same manner as operations on
data.

The notation has so far been tried on a few examples, such as
matrix-vector multiplication, matrix-matrix multiplication, FIR filters,
the Discrete Fourier Transform, and implementations of the Fast Fourier
Transform, [Johnsson et. al. 81], [Johnsson, Cohen 82a], [Johnsson,
Cohen 82b].

Used for verification, expressions directly describing an implementation
can by algebraic manipulations, be transformed into a form that directly
describes the input-output transformation of the entire array, even when
explicit control is used to sequentialize the computations.

5.1.2 Computer Arithmetic
Chao-Lin Chiang (Advisor: Lennart Johnsson)

The binary number system has an inherent drawback, the carry chain. In
the residue number system addition, subtraction and multiplication can
be performed on each individual digit independently. There is no carry.
Possible applications can be found in signal processing and algebraic
computations.

We have undertaken a study of the possible merits of the residue number
system if implemented in VLSI. Only preliminary results are available at
this time.

Several different ways of implementing a multiplier in the residue
number system has been investigated. The following three alternatives
are all of interest

- a table look-up method

- a combination of tables and adders

- arrays of full adders

After an analysis of chip area and delay time for each alternative we
have concluded that for a base p that can be represented by 4 bits or
less i table look-up method is preferable, that the second alternative

40

offers advantages in the range 5 - 9 bits, and the third alternative is
competitive when more than 9 bits are required.

For a given dynamic range there are, in general, several possible
choices of moduli. Once our estimates of area and performance for a
given moduli become firm, it should be possible to specify what set of
modulus is optimal.

The following basic properties of the residue number system should be
noticed:

- A residue number system is more efficient than a binary number
system in the sense that if a given number X requires m bits in a
binary representation, then the same number of bits can represent a
number up to -1.44X in a residue number system.

- The code efficiency approaches 1 as 1/log 2x.

- There exist designs of N bit residue multipliers with O(NlogN) area
and delay time in the range O(log2N log 21og2N) to O[(log2N)

2]

depending on which timing model is used.

5.1.3 Synthetic Aperture Radar
Sheue-Ling Lien (Advisor: Jim Kajiya)

Partially supported by the Silicon Structures Project.

The design of a Synthetic Aperture Radar (SAR) chip is used as a test
case in the development of a Silicon Compiler for signal processing
applications.

SAR is a radar system that through processing of the return radar signal
achieves the effect of having a larger (virtual) radar aperture than the
one provided by the physical dimensions of its antenna. The amplitude
and phase of the received signals are collected for a certain period,
after which the signal is processed. High range resolution is achieved
by the use of wide bandwidth transmitted pulses. High azimuth
resolution is achieved by focusing, with a signal processing technique,
an extremely long antenna that is synthesized from the coherent phase
history. The processing consists of a weighted summation of equally
spaced samples from the signal history.

Our SAR design is based on the requirements set forth by the Jet
Propulsion Laboratory of Caltech for a real-time application. Pulses
are generated between every pulse period Tp (Tp-l mS). Between each
echo 1024 samples are recorded with the sampling period of Ts-50 nsec,
at a delay time period of Tw. The return signal is digitized according
to the range bin j and the echo (pulse) i it is in, by 10-bit words with
5-bit real part and 5-bit imaginary part.

Every 16 echoes are summed for each separate range-bin, to give an
averaged result of the original signal. The pre-sum computation reduces
the number of points needed in the convolution. The averaged signal,
having 1024 range channels, is subject to a 40-point convolution
computation. Adding signals coherently synthesizes the aperture.

--- I

41

Block diagrams have been made up for SAR systems based on, either static
data, dynamic kernels or static kernels and dynamic data. The basic
function blocks needed are FIFO shift registers, rotators, adders, and a
huge amount of storage. The implementation of all the function blocks
are contained in a cell library. Once the floor plan is defined the
layout can be generated by using a general router to wire the function
blocks together.

A dynamic shift register cell deigned by Tony Bell, Fairchild
representative in the Silicon Structures Project, is used for storage.
The cell needs to be refreshed at least every 0.1 micro sec. A parallel
architecture is used to meet the throughput requirement. 18-bit wide
registers are used for the accumulation in the convolution computation.
The burst rate of data coming in is 20 MHz. 1 MHz is the rate of the
convolution computation. A pipelined Cordic rotator is used in the
convolution computation. The convolution requires 20 processors, each
with 1 rotator, I adder, and 18xlk storage. Two adders are needed for
averaging the input data.

5.2 Image Processing

5.2.1 Fingerprint Recognition
Barry Megdal (Advisor: Carver A. Mead)

Early work supported by ONR. Later work supported under this contract
and by a Hughes fellowship.

The work done in the past year has been in the area of architectures for
VLSI implementations of high-bandwidth algorithms for processing digital
images, with particular emphasis on the encoding and subsequent
comparison of fingerprint images.

Fingerprints are an attractive choice as the sample images for use in
this research, as they are structured yet non-trivial, and fingerprint
recognition is an area in which much effort has been expended,
particularly in terms of recognition of relevant print features by
humans. Fingerprints consist basically of a series of segments
(ridges), some curved, and some straight, with ridge ends and ridge
forks more or less randomly distributed throughout the images.

A successful automated fingerprint recognition system must have several
properties. Most importantly, it should be capable of correctly
identifying a given print to a high degree of accuracy, and be very
unlikely to decide that it recognizes a given print, when in fact that
print is from a different finger. It is also necessary that it only
infrequently reject a valid print. These desirable properties must be
maintained even in the face of the inevitable noise and distortion
introduced in the process of inputing the images.

The fingerprint comparison process take place in two phases. In the
first phase, parallel image processing algorithms are used to produce a
graph structure encoding of the patterns of the low level "features"
(ridge forks and ends) in the print image. In the second phase, the
labeled graphs that result from phase one are "compared" in order to
produce some measure of the similarity of the two input fingerprint

42

images, and therefore allow a decision on whether they are indeed from
the same finger.

The image processing operations in phase one are implemented via a
pipeline of specially designed processing structures, known as
"neighborhood processors". Each of these processors is capable of

performing operations on a "window" into the image surrounding a given
pixel. Each cell in the window can communicate data to its neighbors,
and is able to perform simple computations. Assuming that the data is
input into the chip in raster-scan, serial fashion, the effect is to
move the processing window over the entire image, pixel by pixel, in
real time. The fingerprint image must undergo several such processing
steps before the point at which the graph representation can be created
is reached. Among these are filtering, ridge restoration, thresholding,
thinning, and feature extraction.

The result of the image processing operations is the location of each of
the relevant features in the print image, as well as a graph structure
representing the distance relationships between the features. The
process of comparing the graphs is quite interesting, as the subject has
been little treated in the graphs theory literature. Algorithms to
determine isomorphism of graphs are well known, but quantitative
comparisons of similar but non-identical graphs is a more complex
problem. The method used in this work is the computation of a
similarity function, based upon the properties of the maximal common
subgraphs of the two graphs in question. Much of the recent work has
centered on efficient algorithms for determination of the maximal common
subgraphs of two fingerprint encoding graphs, as well as the important
issue of analysis of the subgraphs found for significant sets of
connected nodes.

This work may be contrasted with the limited previous work in the field
of automated fingerprint recognition and comparison in several ways. On
one level it may be observed that the algorithms as described are
inherently suitable for implementation as VLSI computational structures,
while the vast majority of previous work in image processing and
especially the processing of fingerprint images, has been oriented
toward conventional computers. More importantly, the encoding and
comparison method described are quite robust, in that they have great
immunity to various forms of defects in the fingerprint images.

Two of the more notable attempts at a computer-based recognition system
are the work by Wegstein at the National Bureau of Standard, and by the
Hughes Aircraft Corp. Research Labs. Wegstein's system, though it used
a reasonable encoding scheme, did not sufficiently emphasize the needed
front-end image processing steps. The Hughes system, which was based on
optical correlation techniques, proved to be too sensitive to
differences in the techniques used to input the print images, as for
example variations in the amount of finger pressure used.

The system as described has been implemented through software
simulations of both the parallel image processing algorithms, and the
graph comparison method. The results to date are quite good, with the
ability to distinguish between fingerprints from the same and different
fingers having been demonstrated. Some work does remain to be done in
the area of establishing quantitatively the abilities and limitations of

43

the algorithms used.

5.2.2 A Mechanism Describing the Construction of Cortical Receptive
Fields from the Center/Surround LGN Receptive Fields

Sheue-Ling Lien (Advisor: Jim Kajiya)

A study of biological vision systems was initiated this summer based on
the belief that efficient, massively concurrent, algorithms for image
processing systems with considerably increased capability best can be
found by studying such systems. The study is carried out in cooperation
with Derek Fender, Biosystems Information, Caltech.

Simple cells in the visual cortex have spatially localized receptive
fields. The cells respond strongly to specifically oriented lines or
edges positioned in their receptive fields. If the responses of the
cells are analyzed in the spatial frequency domain, we found that the
cells are tuned to specific spatial frequencies with the bandwidth of
the order of one octave.

Several models have been proposed to study the receptive fields
properties and response specificities of the simple cortex cells. The
study by Rose proposed that the LGN cells which drive simple and complex
cells in the cortex have scattered receptive fields (perhaps aligned in
a row) whereas those driving cells with "hypercomplex" properties have
closely superimposed fields. Daugam pointed out some defects in Rose's
model that the orientation tuning curves based on this model are smooth
at the top but undulate at the sides, which is contradicted by the
observation of Ikeda and Wright et at.

In this research we develop a new model which describes the construction
of the cortical receptive fields from a linear summation of the LGN
receptive fields over the whole visual plane, based on the known facts
that simple cortical cells are driven by a number of LGN cells with
linear superposition properties. A two-dimensional weighting function
is proposed in this model to describe the scattering of the amount that
LGN inputs contribute to the cortical cells. The weighting function
effectively is a linear filter over the LGN inputs that feeds into
simple cortical cells.

This new model is able to affirmatively describe the spatial
localization, the spatial frequency localization, the spatial tuning and
the orientation tuning characteristics of the cortical receptive fields,
through the variation of several parameters of the model. A graph
representing the bandwidths and the orientation selectivities of several
tuned cells in monkey, recorded by Devalois, is used to illustrate the
control operation of the model on these characteristics. The
two-dimensional spectral analysis of the cortex receptive fields, the
LGN receptive fields and the proposed weighting function are also
discussed in detail.

44

5.3 Computer Graphics

5.3.1 Ray Tracing Algorithms

Jim Kajiya

We have been exploring new graphics algorithms in order to have a supply
of computation intensive applications for VLSI. In particular, we have
been exploring algorithms which push the frontiers of synthetic image
realism at the cost of great numerical effort.

The first result is a new algorithm for Ray Tracing Parametric Patches
[Kajiya 82a]. This algorithm is not an image space algorithm in that

it does not recursively divide the patches until a subpixel criterion is
met. Rather it uses results from algebraic geometry to find a numerical
algorithm which solves for intersections directly. Because this
numerical algorithm is amenable to heavy pipelining and because the
entire algorithm is amenable to massive parallelism, it is a natural
candidate for a challenging VLSI implementation: We estimate that a
real-time implementation requires at least 200 gigaFlops of computing
bandwidth.

The second result is a new algorithm for Ray Tracing fractal surfaces.
These are stochastically defined surfaces which promise to significantly
enhance the realism of all computer imagery, and especially flight and
tactical simulation applications -- if a real time implementation may be
constructed. Our new algorithm [Kajiya 82b] can both be used for ray
tracing and for scan line rendering. Current methods first instantiate
the entire hierarchy of polygons and then render the scene with
conventional polygon rendering schemes. This is very expensive: the
number of polygons may easily reach well into the six figure range. The
new method combines the instantiation and rendering phases. It proceeds
by pruning the instantiation tree when a part of the hierarchy cannot
contribute to the portion of a display of current interest.

The third result is of more mathematical than practical interest in
graphics: Splining in non-flat manifolds. There are several
applications in computer animation and in robotics in which it is
desirable to interpolate positions of articulated objects. The
configuration spaces of these objects forms a manifold which is most
often curved. Additionally, the transformations (such as rotation) used
to manipulate configurations are noncommutative under concatenation.
For these reasons ordinary spline interpolation techniques do not apply.
Practically, researchers simply spline on a convenient parameter space.
Although the interpolation paths are highly coordinate dependent, in
most cases these results are often satisfactory. The investigation here
asks: "What is the proper theory?" We have found that for product
manifolds the interpolation problem splits into its components,
explaining why conventional spline theory is so straightforward. We
develop criteria and a set of differential equations which solve the
spline problem in general.

45

5.3.2 High Performance Graphics Machines

Mike Ullner (Advisor: Jim Kajiya)

Ray tracing works by simulating the behavior of light rays as they
interact with the surfaces of a scene. It can produce pictures of
objects casting shadows, it can show objects reflected in other
surfaces, and it can model the refraction of light as it passes through
transparent objects. Moreover, all of these effects can be achieved by
using variations of the same basic computation. When programmed on a
conventional computer, ray tracing algorithms are generally considered
to be intractable, but the same characteristics that make them tedious
on sequential machines also make them ideally suitable for concurrent
operation. In particular, successive rays to be traced are almost
entirely independent of each other. In a sequential implementation,
this fact makes it difficult to apply the result of one ray tracing
operation to reduce the computations required for the next. In a
parallel implementation, on the other hand, it is possible to trace many
rays at the same time because they are largely independent.

A couple of different machine organizations for exploiting the
concurrency that is possible in a ray tracing algorithm have been
studied. The first is a rather conventional pipeline constructed from
standard, commercially available components, whereas the second uses an
array of loosely coupled, custom designed processors. The array has the
advantage that its performance may be boosted by increasing the number
of processors, but unfortunately integrated circuit technology has not
yet reached the point where it is economical to fabricate these
processors. The pipeline, on the other hand, could be built with
currently available devices, although its performance would be tied to
the speed of its components. Either machine, however, can make ray
tracing algorithms viable alternatives to some of the more conventional
approaches.

Although the machines outlined above can raise the speed of ray tracing
computations to a practical level, they fall short of real-time
performance. They are thus unsuitable for those applications of
computer graphics where real-time operation is critical and image
quality is of secondary importance. Therefore, we have also studied
machines for implementing other types of highly parallel algorithms to
achieve real-time performance. One of these machines is designed to

produce shaded images of a scene by using scan line techniques. Its
performance is based more on the number of processor than on the speed
of individual processors, and it may be extended to handle an arbitrary
number of polygons in real-time. Another machine eliminates hidden
lines from a wire frame picture in real-time. Once again, this machine
is based on a collection of identical processors operating in parallel.
Each of these processors consists of little more than three bit-serial
multipliers together with some registers, adders, and control logic.
Such a processor is feasible even with the current technology for
fabricating integrated circuits.

46

5.3.3 Display System

Dan Whelan (Advisors: Carver A. Mead, Jim Kajiya)

Quite a few multiprocessor systems have been proposed for computer
graphics, few have actually been built. One interesting approach has

been called "a processor per pixel" and Fuchs has designed and
implemented a chip for use in such a system. Our work has focused on
the design and implementation of much simpler "processors" in an effort
to make the processor smaller and the system practical to build.

Our display system architecture has rectangular area filling as a
primitive operation, [Whelan 821. With such a display, lines can be
drawn significantly faster than with conventional pixel based display
systems. More significantly, filled areas are rendered in constant
time, an O(n2) speed improvement and convex polygons can be filled with
an O(n) speed improvement.

The processors that implement this architecture are simple extensions to
ordinary RAM cells and also employ a different address decoding scheme.
A 4K bit (64 by 64) device has been designed and implemented in nMOS.
Currently, a microprogrammable tester is being designed to test the
device. If all goes well, the plan is to build a demonstration system.
Such a system ought to be able to render 66,000 rectangles per frame
time (1/30 sec.). The system would be unparalleled at rendering VLSI

layouts.

Currently under study are architectures that can handle on the order of

100,000 polygons/frame time. Unlike previous attempts at high
performance systems, our intent is to provide for realistic shading
algorithms and improved surface detailing. Such image complexity and
quality is state-of-the-art currently and requires a great deal of CPU
time. State-of-the-art in real-time animation is around 4,000
polygons/frame time and is achieved by some of the commercial flight

simulators.

47

6. Formal treatment of concurrent systems, programming languages

6.1 Notations for and Analysis of Concurrent Systems

6.1.1 Concurrency in Computation

Alain Martin

This research is partially supported by the Silicon Structures Project

This research comprises three main aspects, namely:

- The study of programming notation and methods for distributed
programming,

- the design and analysis of distributed algorithms,

- the design and analysis of parallel automata for these
computations, in particular, large ensembles of communicating
processing elements.

It is our belief that one should not investigate one of these three
topics without paying careful attention to the other two. It is not
possible to study programming notations and methods-in particular for
expressing communication and parallelism--without trying them on
significant examples. It is not possible to design and analyze good
algorithms for these examples without an adequate model of a processing
automaton. Similarly, it is not possible to construct highly parallel
machines without a good idea of the kind of algorithms and of
programming style considered for it.

During the past year, the adequacy of a distributed programming language
strongly inspired by C.A.R. Hoare's CSP has been investigated. Several
important changes have been made, and a semantic definition of the
communication primitives has been proposed. One modification is the
introduction of channel variables. (We believe that in order to apply
programming formalism to a large class of computing systems, not only
stored-program computers, but also, e.g., VLSI circuits, one will have
to supplement the traditional notion of variable with another one
describing the way in which information is stored on a conducting wire.)
Another modification is the suppression of "input commands in guards,"
the semantics of which has been found too ambiguous and difficult to
use. The construct introduced to achieve the same effect is
surprisingly simple and clean: it makes the behavior of input and output
commands entirely symmetrical, makes it possible to construct "fair"
solutions to synchronization problems (e.g., fair arbitration) which
were impossible to construct in CSP, and permits to design better
solutions for certain problems than is possible in CSP.

The semantics of the communication primitives used is captured by two
axioms. One, the synchronization axiom, which formalizes the
synchronization properties of the primitives, is based on a previous
general study of synchronization published in (Martin 81a]. The other
one, the communication axiom, which formalizes the "distributed
assignment" property of the primitives, is a generalization of the

48

substitution rule for the assignment statement.

This work will be reported in a forthcoming article [Martin 82a].

Another part of last year's research consisted in experimenting with the

above programming language and semantics on a class of significant

algorithms, in particular the so-called "distributed mutual exclusion"
algorithms. Two classes of algorithms have been designed: for the case
when the processes are arranged in a ring, and for the case when they
are arranged in an arbitrary graph. (The systems are fully distributed:
no central process, central clock or common store is allowed. The

processes communicate with each other by exchanging messages only, and
in general one process may directly communicate with only a small subset

of neighbors.) We believe the solutions proposed to be novel and

efficient. They suggest some new and general design and proof
techniques which will require further investigation. The different
solutions to this problem are described in [Martin 82b].

Not much has been done during the past year about the third part of this

research, namely the design of highly concurrent computer systems.
However, some applications to the general method described in [Martin

81a] and [Martin 81b] have been considered. It has been verified on
these applications that the general method described in [Martin 81a]
and [Martin 81b] for mapping a concurrent computation on a parallel
machine leads, in most cases, to a close to optimal spreading of the
concurrent activities on the different processing elements.

6.1.2 Concurrent Algorithms as Space-time Recursion Equations

Marina Chen (Advisor: Carver A. Mead)

An early phase of this work was supported under this contract.
Currently supported by the System Development Foundation and an IBM
fellowship.

It is clear from existence proofs of such innovative designs as systolic
arrays [Kung, Leiserson 80], tree machine algorithms [Browning 80],
computational arrays [Johnsson et. al. 81], wavefront arrays [Kung
80], etc. that vast performance improvements can be achieved if the

design of so-called "high-level" algorithms is released from the one
dimensional world of a sequential process, and the cost of
communications in space as well as cost of computation in time is taken

into consideration [Sutherland, Mead 77]. While this higher
dimensional design space provides a great playground for innovative

algorithm design, it also introduces pitfalls unapprehended by those

accustomed to the world of a single sequential process. Verification of
algorithms becomes much more crucial in system designs because debugging
concurrent programs can very easily become an exponentially complicated
task in this rich space. The real difficulty lies in the high degree of
complexity of concurrent systems. The well-known hierarchical approach
can be used to manage the design complexity for such systems. A system
is broken down into successive levels of sub-systems until each is of a
manageable complexity. The effectiveness of this approach relies on two
basic tools: A design and verification methodology for each level and an
abstraction mechanism to go from one level to the next. The latter is
crucially important, for without it the consistency of the whole system

49

is imperiled.

In the paper [Chen, Mead 82], we describe a methodology and a single
notation for the specification and verification of synchronous and
self-timed concurrent systems ranging from the level of transistors to
communicating processes. The uniform treatment of these systems results
in a powerful abstraction mechanism which allows management of system
complexity.

Traditionally, due to the assumption that the cost of accessing
variables in memory is the same regardless of their locations,
sequential algorithms ignore the spatial relationships of variables. In
addition, the steps of a computation have not been explicitly expressed
as a function of time, but are rather implied by programming constructs.
Languages that cannot express the spatial relationships of variables
cannot take into account the most important aspect in the design of a
concurrent algorithm, i.e. ensuring locality of communications, taking
advantage of the interplay of variables in space (in practice up to 3
dimensions) to achieve higher performance. The implicit "time" causes
programming languages to suffer either from not being able to abstract
the history of computation (e.g. in applicative and data-flow languages
[Kahn 74], [Backus 78]), or not being able to abstract computation in

a clean functional form (e.g. in assignment-based languages). Here we
choose to make "time" an explicit parameter of computation. We call our
representation of computation a "Space-time Algorithm".

In [Chen xxxx:TR:82], CRYSTAL (Concurrent Representation of Your Space
Time ALgorithm), a notation for concurrent programming is proposed. The
fixed-point approach [Scott, Strachey 71] is used for characterizing
the semantics. Within this framework, a program is expressed as a set
of systems of recursion equations. Unknowns of the equations are data
expressed as functions from the space-time domain to the value domain.
For a deterministic concurrent system, such as a systolic array, a
single system of equations results, and the semantics of such a system
is defined as the least solution of the equations. The semantics of
concurrent systems in general can be characterized as the corresponding
set of solutions of the set of systems of equations. Various inductive
techniques (see for example [Manna 74] used in verifying recursive
programs can be directly applied in verifying space-time algorithms and
proving their properties. We have applied this framework to transistor
circuits, logic gates, arithmetic units, sequential processors,
ensembles of large numbers of communicating processes such as the
synchronous and self-timed version of the matrix multiplication on
systolic arrays [Kung, Leiserson 80], and Tree Machine Algorithms
[Browning 80]. In the systolic type of computations, the notion of

wavefront is especially important. We define the "phase" of a
computation wave in a way that is analogous to the wave in physical
world. The set of all possible "phases" can be formalized as a

well-founded set, upon which the inductive proof is based.

50

6.1.3 A Characterization of Deadlock Free Resource Contentions

Marina Chen (Advisor: Carver A. Mead)

Suppose we have a system consisting of some finite number of concurrent
processes. The processes are said to be synchronized whenever the
progress of some process may have to be delayed because of conditions
caused by the other processes in the collection. Whenever processes are
synchronized there exists the possibility that they may maneuver
themselves into a deadlock [Habermann 69]. A deadlock is a state in
which there is at least one non-terminated process indefinitely delayed,
i.e., such that no state can be reached from which the process can make

further progress.

An important class of deadlock problems arises from conflicts over
shared resources, each of which can be used by only one process at a
time. For example, one process while using resource A may require
resource B. However resource B may already be in use by a second
process which, in turn, requires resource A in order to proceed. Both
processes are therefore stalemated and will remain so indefinitely: they
have reached a deadlock.

The problem of deadlock arising from shared resources was first noticed
in operating systems having quasi-parallel processes [Dijkstra 68].
These processes, although logically parallel, are sequentialized when
implemented by a traditional sequential machine. Thus a natural solution
for preventing deadlock is by a global scheduler which controls the
sequence of resource assignments. A well-known scheme for deadlock
prevention is the "banker's algorithm" [Dijkstra 68]. In this scheme
the maximum amount of each resource each process ever requires is given.
There is one scheduler for all the resources. It keeps track of which
resources each process is using, i.e., the "state" of the system. The
banker's algorithm entails a method-of computing the "safety" of states.
Each time a process requires a resource, the scheduler will allow the
use of that resource only if the ensuing state is still safe. The
banker's algorithm is an example of a global scheduler.

In the paper [Chen, Rem, Graham 4684:TR:82] we look at resource sharing
without a global scheduler. In fact, the only scheduling we allow is the
delaying of a process requiring a resource already in use. The
acquisition of resources is concurrent and asynchronous, and no global
information about it is available. A process is always allowed to free
a resource; the resource returned is then available for use again. Such
"mutual exclusion scheduling" can, for example, be realized with
semaphores (Dijkstra 68]. Each resource has a binary semaphore and an
arbitration mechanism. We do not assume any particular arbitration
scheme. This type of "minimal scheduling" is important, for example, in
VLSI systems [Mead, Conway 80], in which the requirement to have a
global scheduler would seriously degrade its computing potential.

We establish necessary and sufficient conditions for collections of
synchronized processes to be free from deadlock and prove a general
theorem which characterizes those collections which have deadlock
potential. W- examine the computational complexity for testing the
deadlock condit.on and derive a polynomial time algorithm for the
problem. We also discuss the special case that all resources are of
different types.

51

6.1.4 A Structured Petri Net Approach to Concurrency
Young-il Choo (Advisor: Jim Kajiya)

6.1.4.1 Hierarchical Nets
Liveness and safeness are two key properties Petri nets should have when
they are used to model asynchronous systems. The analysis of liveness
and safeness for general Petri nets, though shown to be decidable by
[Mayr 81], is still computationally expensive ([Lipton 761). In this

paper an hierarchical approach is taken: a class of Petri nets is
recursively defined starting with simple, live and safe structures,
becoming progressively more complex using net transformations designed
to preserve liveness and safeness.

Using simple net transformations, nice nets, which are live and safe,
are defined. Their behavior is too restrictive for modeling non-trivial
systems, so the mutual exclusion and the repetition constructs are added
to get m-r-nets.

Since the use of mutual exclusions can cause deadlock, and the use of
repetitions can cause loss of safeness, restrictions for their use are
given. Using m-r-nets as the building blocks, hierarchical nets are
defined. When the mutual exclusion and repetition constructs are
allowed between hierarchical nets, distributed hierarchical nets are
obtained. Distributed hierarchical nets are used to solve the Smokers
problem by Patil and the Dining Philosophers problem. These solutions
are compared with Lauer and Campbell's [Lauer, Campell 751 path
expressions'.

General net transformations not preserving liveness or safeness, and a
notion of duality are presented, and their effect on Petri net behavior
is considered.

6.1.4.2 The Infinite Shuffle
In studying the behavior of Petri nets, the most interesting cases are
when the nets have non-terminating behavior. For example, let A and B
be Petri nets generating a's and b's respectively in a cycle. By the
definition of Petri nets, the composite behavior of A parallel with B is
the set of all fair merges. The resulting behaviors are infinite and
they cannot be approximated using finite initial behaviors.

We have an abstract definition of the infinite shuffle, but we would
like to relate it to a more operational one that is closer to the
underlying implementation using probabilities.

GOAL: Is there any way to assign a probability to the nth occurance of
a, say, as a function of the prefix generated up to then, so that the
probability of generating an unfair merge is zero, but a fair merge is
non-zero?

PROBLEMS: There are an uncountable number of fair strings and countable
number of unfair ones. The sum of the probability of all fair strings
should be one. The unfair ones zero. If each letter has probability
less than one, then any infinite sequence has probability zero. What
numbers can be assigned to the probabilities of the fair strings so that
it makes sense? There are infinite series (countable) which sum to
finite numbers, but are there uncountable sets which also sum to finite

52

numbers?

DIRECTION: One possible direction is to look at the non-standard real
numbers first constructed by A. Robinson [Robinson 66]. We want to
consider probability with non-standard measures ([Bernstien, Wattenburg
691). Using infinitesimal numbers, the discontinuity between the finite
and infinite shuffle may be bridged.

6.2 Functional Programming Languages

6.2.1 Experiments with data abstractions
Jim Kajiya

The promise of VLSI to solve major computation problems is hampered by
our ability to program such new architectures. Even today we see that
it is often software, not hardware, which is the limiting factor in
application of computers for military purposes. The increased
capability of VLSI hardware may go untapped if it is designed without
regard to its programmability. We are conducting programming language
experiments which seek to translate the projected increase in compute
power offered by VLSI into vastly increased programmer productivity.

There are three programming language experiments which vary according to
risk and potential payoff. The first is called Fith, an extremely small
language which explores applicability of data abstraction and late
binding to systems programming. The second is called ATP, which
attempts to include data abstraction into a mature functional language.
The third, 81, attempts to fuse functional and logic programming.

Fith is a kernel language which is extremely easy to implement [Kajiya
xxxx:TR:82]. Syntactically, it represents most intermediate languages
of compilers and is a very close relative to FORTH. Semantically, it is
virtually identical to Smalltalk. The question that this experiment
seeks to answer is: Can late binding data abstraction languages be made
efficient enough for systems programming? The well known advantages of
Smalltalk and its descendants (PIE, flavors, actors) have been denied to
systems programmers because typical runtime structures are very
inefficient. Fith recovers much of this efficiency by certain
strategies to drastically minimize the need for storage management, the
principal mechanism behind the inefficiency of the aforementioned
languages. We are in the final stages of implementing Fith, these
include a compiler, interpreter, runtime symbolic debugger, process and
context managers, and garbage collectors. We will soon attempt to gain
extensive experience with the language in order to test its suitability
as a systems programming language.

The second language experiment is called ATP. In this experiment, the
functional language known as array theory - which is an extension of
APL allowing recursive arrays - is combined with data abstraction
[Kajiya 82c). This combination creates a synergy between the

functional and data abstraction approaches engendering a new style of
programming. In this style, operators are used to define the pattern of
message passing among objects arrayed in data structures. For example,
to send a dyadic message f between the objects in a vector A B C D, it
is sufficient to write f/A B C D to give the result AfBfCfD; rather than

53

to have to write a loop or recursive function such as:

message reducef(a) begin
x:-a[l];
for i:-2 to 4 do

x:-x f a[i];
end

which steps through a vector accumulating the result of concatenating
the message to the initial object. We are very excited by this
language: it appears to increase programmer productivity by more than an
order of magnitude for signal processing and graphics applications. We
are still in the planning stages for implementing this language.

The third language experiment is called 81. It is the most speculative
but also promises the highest payoff. With this language, the notions
of functional and logic programming are combined. It appears that
functional languages have great power for programming in the small but
do less well for large projects. On the other hand, logic programming
is extremely powerful for programming in the large but is weak for small
applications. A combination of these two languages would have each fill
in the others weaknesses. It turns out that the combination of these
two programming styles is far from trivial. We were able to easily write
programs in such a style but had absolutely no clue how to execute such
programs! The Key to the implementation has turned out to be an idea in
mathematical logic we have called meta-recursive model theory [Kajiya
xxxx:TR:82], viz. studying models which are identical to the language
used to speak about it. It appears that these models are very natural
for functional languages. Indeed, the notions are implicit within ideas
presented by (Backus 1981) and in the interpretations of the lambda
calculus and LISP which are separate from the Scott lattice model. In
particular, the semantics of the LISP quotation conventions is amenable
to formal treatment using such models. We are currently exploring the
notion of logical inference in such models. Inference must be understood
before such notions as soundness and completeness may be defined, which
in turn are necessary before much work on implementing the deduction
procedure which effects the programming language processor.

6.2.2 Type Inference of Late Binding Languages

Eric Holstege (Advisor: Jim Kajiya)

The following project performs a procedure known as type inference on
the popular late binding language Smalltalk. Type inference deduces
appropriate bookkeeping information key to efficient execution of late
binding languages. This class of late binding languages (which include
Smalltalk, LISP, actors, etc.) has been found to offer significant
advantages in programmer productivity in an interactive environment. In
other object oriented languages the user is required to explicitly
maintain and supply this bookkeeping information. By deducing such
information this compiler produces code suitable for execution on either
sequential machines or highly concurrent machines such as Lang's, [Lang

j5014:TR:82].

Object-oriented languages are desirable not only for having a data

54

abstraction mechanism corresponding to PASCAL-style records, but also a
data encapsulation giving greater control over the manipulation of data.
An object-oriented language class specifies the organization of data and
also the operations which are to be allowed on it. This protection of
data from arbitrary corruption gives a greater security and error
avoidance. In addition, it has been found at Caltech from the heavy use
of SIMULA, and more recently MAINSAIL, that the object-oriented style is
conceptually easy to program in, providing a useful framework for the
subdivision of large problems into manageable pieces.

The second major area focused on is declarationlessness. In most widely
used general purpose languages, the programmer must declare the types of
all the variables he uses. These variables then remain of the specified
type throughout the execution of the program. This allows the compiler
to produce efficient code and to identify errors whose detection must
otherwise be deferred until runtime; however, it sacrifices a good deal
of the generality which is possible with less stringent variable binding
schemes. On the other hand, languages which don't require declarations,
such as SNOBOL and LISP, allow considerable generality by virtue of
their extremely late binding, but thereby sacrifice efficiency.

Smalltalk is an example of the latter category. Variables can be of any
data type, or "class", including user defined ones, and can change types
merely by appearing on the left side of an assignment statement.
Associated with each class is a set of operations allowed on variables
of that class, which completely defines the legal manipulations of the
data.

Unfortunately, the twin features of declarationlessness and
object-orientedness, while of great benefit in increasing programmer
productivity and program reliability, suffer heavily from the point of
view of runtime efficiency.

In this effort we are investigating ways to obtain the undeniable
advantages of declarationlessness and object-orientedness, without
sacrificing runtime efficiency. More specifically, the goal is to build
a compiler for a dialect of Smalltalk for the VAX under UNIX (Berkeley
4.Ibsd), which incorporates data flow type-inference algorithms enabling
it to produce executable programs of an efficiency comparable to that of
programs produced by compilers for more traditional but less powerful
languages.

6.2.3 An APL compiler

Howard Derby (Advisor: Jim Kajiya)

APL is a programming language with extreme expressive power and
inherently parallel semantics. Such characteristics make the language
and its descendants prime candidates for implementation on concurrent
VLSI systems. This study attempts to overcome many of the problems
encountered in compiling such a language.

APL is about 20 years old, but most implementations still interpret it.
Hewlett-Packard has an implementation which compiles small sections of
APL programs as it goes, but there are no implementations which
"compile". This is primarily due to the completely dynamic typing used

55

by APL, which makes it impossible to simply generate code on a statement
by statement basis. This is unfortunate, because APL's ability to
manipulate arrays make it a very powerful language for signal processing
which require such large amounts of computing that compiling is almost
mandatory.

Our research for the past year has centered on production of a prototype
APL compiler. It is being written in the language PROLOG. Because of
it's unique ability to backtrack and to unify trees, the use of PROLOG
greatly simplifies the programming effort.

The compiler is based upon a system of rules that define the behavior of
the various APL functions and operators. The result of an APL operation
has 4 attributes: type, rank (number of dimensions) , shape (size along
each dimension), and value at each index. For each operation, there are
rules that specify each of these attributes in terms of its arguments.
For the shape (which is a vector) , and value (which may have any number
of dimensions) , the rules specify how to access an element of the array
from its subscript.

From these rules, the compiler is able to generate code for executing
APL expressions. To generate efficient code it needs to know the type
and rank of any APL variables that appear in the expression. To get
this information, it uses the same rules in an interpretive mode to
evaluate only those parts of the program that are needed.

Compiling APL is not as easy as it may seem. Complications are
introduced by branches in control flow, loops, and user functions.
Since code for an expressions makes assumptions about the variables it
contains, machine code control flow cannot be simply modeled after APL
control flow. Compiler sections are needed to keep track of the
assumptions used and force new machine code to be generated when it is
needed.

6.3 Theory of Computer Science

6.3.1 D-infinity as a Model of Omega-Order Intuitionistic Logic
Leonid Rudin (Advisor: Jim Kajiya)

Partially supported by a fellowship.

The main aim of this work is to formulate natural foundations for
type-free illative lambda-calculus. Scott's D-infinity model for the
pure lambda-calculus is extended to include a lattice algebraic model
for propositional logic by proving the following theorem:

Let D-O be a finite relatively pseudo-complemented lattice. Then
D-infinity is a complete relatively pseudo-complemented lattice with the
operation of relative pseudo-complementation given by

inf
N-th component of(X->Y) - g.l.b {(Xn->Yn),....

n-0O
Psi(n+1 ,n)(X(n+1)->Y(n+1)). . .

This shows that the D-infinity model is amenable to an axiomatization of

56

intuitionistic propositional calculus. We have found that it is not
possible to strengthen this result to Boolean logic due to the following
result:

Theorem. The maximal Boolean subalgebra of D-infinity is contained in
D(O,infinity).

Using the model provided by the above two theorems we are able to

resolve the so-called classical paradoxes of illative combinatory logic
(e.g. Curry's) by restricting the notion of application and abstraction
to (lattice) continuous terms. All ordinary lambda-calculus terms are
continuous. Based on this interpretation of implication we build an
axiom system for illative logic. As in all model-based axiomatizations
we are guaranteed consistency through the existence of a model. Because
of the completeness of the Scott lattice, this theory may be extended to
Omega-order predicate calculus.

I

57

I. Publications, Technical Reports and Internal Memorandas (ARPA)

Barton Antony F., "A Fault Tolerant Integrated Circuit Memory,"
3761:TR:80, Ph.D. Thesis, Computer Science, Caltech, April 1980.

Browning, Sally A. and Charles L. Seitz, "Communication in a Tree
Machine," Proceedings of the Second Caltech Conference on VLSI, January
1981.

Browning, Sally A., "Generating Padding Processors for Arbitrary Fanout
Trees", 3827:DF:80, Computer Science, Caltech, July 1980.

Browning, Sally A., "The Tree Machine: A highly concurrent computing
environment," 3760:TR:80, Ph.D. Thesis, Computer Science, Caltech,
January 1980.

Bryant, Randal E., Jack B. Dennis, "Concurrent Programming", 5027:TR:82,
Computer Science, Caltech. To appear in Operating Systems Engineering,
M. Maekawa, ed., Springer Verlag, 1982.

Bryant, Randal E., Mike Shuster, Doug Whiting, "MOSSIM II: A
Switch-Level Simulator for MOS LSI, User's Manual", 5033:TR:82, Computer
Science, Caltech, 1982.

Bryant, R. E., "Switch-Level Modeling of MOS Digital Circuits",
International Symposium on Circuits and Systems, IEEE, May, 1982.

Bryant, Randal E., "A Switch-Level Model of MOS Logic Circuits",
Proceedings of the First International Conference on VLSI. VLSI 81,
Academic Press, 1981, pp. 329-340.

Bryant, Randal E., "A Switch-Level Simulation Model for Integrated Logic
Circuits", Laboratory for Computer Science, MIT, Technical Report
MIT/LCS/TR-259, March 1981.

Carroll, Chris, "Hybrid Processing", 5034:TR:82, Ph.D. Thesis, Computer
Science, Caltech.

Carroll, Chris R., "A Smart Memory Array Processor for Two-Layer Path
Finding," Proceedings of the Second Caltech Conference on VLSI, January
1981.

Carroll, Chris R., "Hardware Path Finders," Computer Science, Caltech,
internal document, September 1980.

Chen, Marina, Carver A. Mead, "Formal Specification of Concurrent
Systems", 5042:TR:82, Computer Science, Caltech, October 1982.

Chen, Marina, Carver A. Mead, "On the Semantics of Space-Time
Algorithms: A Summary", 5020:DF:82, Computer Science, Caltech.

Chen, Marina, Rem, Martin, and Graham, Ronald, "A Characterization of
Deadlock Free Resource Contentions", 4684:TR:82, Computer Science,
Caltech, January 1982.

Chen, Marina, "A Semantics for Systolic Arrays", 4635:DF:81, Computer

58

Science, Caltech, August 1981.

Chen, Marina, "HARMOS-A Notation for Designing Concurrent Systems",
3927:DF:80, Computer Science, Caltech, August 1980.

Choo, Young-il, "Concurrency Algebra: Towards an Algebraic Semantics of
Petri Nets," 4085:DF:80, Computer Science, Caltech, December 1980.

DeBenedictis, Erik, "Testing and Structured Design", Proceedings of the
IEEE International Test Conference, Philidelphia, PA, November 1982.
Also, 4778:DF:82, Computer Science, Caltech, August 1982.

DeBenedictis, Erik, "An Embeddded Concurrent Language", 4781:DF:82,
Computer Science, Caltech.

DeBenedictis, Erik, "Techniques for Testing I.C.", 4777:TR:82, Computer
Science, Caltech.

DeBenedictis, Erik, "A Communications Operating System for the
Homogeneous Machine", 4707:DF:82, Computer Science, Caltech, January
1982

DeBenedicitis, Erik, "Homogeneous Machine Technical Plan", 4705:DF:82,
Computer Science, Caltech, January 1982.

DeBenedictis, Erik, "FIFI Test Instrument: Software Specification",
4686:DF:81, Computer Science, Caltech, November 1981.

DeBenedictis, Erik, "A Methodology for Describing Test Specifications",
4685:DF:81, Computer Science, Caltech, November 1981.

DeBenedictis, Erik, "FIFI Test System, Preliminary User's Manual,"
4270:TR:81, Computer Science, Caltech, April 1981.

DeBenedictis, Erik, "A Preliminary Report on the Caltech ARPA tester
project," 4061:TR:80, MS Thesis, Computer Science, Caltech, April 1980.

DeBenedictis, Erik, "Justification for a Tree Machine", 3751:DF:80,
Computer Science, Caltech, May 1980.

Holstege, Eric, "Type Inference in a Declarationless, Object-Oriented
Language", 5035:TR:82, MS Thesis, Computer Science, Caltech.

Johnsson, Lennart and Danny Cohen, "A Formal Derivation of Array
Implementations of FFT Algorithms", USC Workshop on VLSI and Modern
Signal Processing", November 1 - 3, 1982. (Also available as 5043:TM:82,
Computer Science, Caltech)

Johnsson, Lennart, "Concurrent Algorithms for the Conjugate Gradient
Method", 5040:TR:82, Computer Science, Caltech, September 1982.

Johnsson, Lennart, "VLSI Algorithms for Doolittle's, Crout's and
Cholesky's Methods", IEEE International Conference on Computers and
Circuits, ICCC82, September 28 - October 1, 1982. (Also available as
5030:TM:82, Computer Science, Caltech)

Johnsson, Lennart, "Pipelined Linear Equation Solvers and VLSI",
Microelectronics 1982, May 12-14, 1982. (Also available as 5003:TM:82,
Computer Science, Caltech)

59

Johnsson, Lennart, "A Computational Array for the QR-method", The MIT
Conference on Advanced Research in VLSI, January 25-27, 1982. (Also
available as 5019:TM:82, Computer Science, Caltech)

Johnsson, Lennart and Danny Cohen, "A Mathematical Approach to Modelling
the Flow of Data and Control in Computational Networks", The CMU
Conference on VLSI Systems and Computations, Pittsburgh, October 19-21,
1981.

Johnsson, Lennart, "Computational Arrays for Band Matrix Equations",
4287:TR:81, Computer Science, Caltech, May 1981.

Johnsson, Lennart and Danny Cohen, "Computational Arrays for the
Discrete Fourier Transform," Proceedings of the Twenty-Second Computer
Society International Conference, COMPCON 81, February 1981. (Also
available as 4168:TR:81, Computer Science, Caltech)

Johnsson, Lennart, Uri Weiser, Danny Cohen and Alan L. Davis, "Towards a
Formal Treatment of VLSI Arrays," Proceedings of the Second Caltech
Conference on VLSI, January 1981. (Also available as 4191:TR:81,
Computer Science, Caltech)

Johnsson, Lennart, "A Note on Householder's Method, Sparse Matrices and
Concurrency," 4089:DF:80, Computer Science, Caltech, December 1980.

Johnsson, Lennart, "Gaussian Elimination on Sparse Matrices and
Concurrency," 4087:DF:80, Computer Science, Caltech, December 1980.

Kajiya, J., "Ray Tracing Parametric Patches", SIGGRAPH-82, Computer
Graphics v.16, no.3 July 1982, pp. 245-254. (Also available as
5017:TM:82, Computer Science, Caltech)

Kajiya, and Ullner, "Filtering High Quality Text for Display on Raster
Scan Devices", SIGGRAPH81, Computer Graphics v.15, no.3, August 1981,

pp. 7-15. (Also available as 5018:TM:82, Computer Science, Caltech)

Kajiya (1981) "Generic functions by nonstandard name scoping in APL",
APL81 Conf. Proc., Quote Quad v.12, no. 1, September 1981, pp. 17 2-17 9.

Kajiya (1982) "Initial report on the Fith experiment: a language
incorporating late binding and abstract datatypes intended for systems
programming" Internal Caltech Document.

Kajiya (1982) "Meta-Recursive Model theory" Internal Caltech Doc.

Kajiya (1983) "Designing and Implementing an Array Theory Incorporating
Abstract Datatypes" to appear in proceedings of APL83.

KaJiya (1983) "Rendering stochastically defined surfaces." Submitted to
SIGGRAPH83.

Kajiya and Gabriel (1983) "Splining in curved manifolds" Submitted to
S IGGRAPH83

Kingsley, Chris, "Earl: An Integrated Circuit Design Language",
5021:TR:82, MS Thesis, Computer Science, Caltech, June 1982.

Lang, Dick, "The Extension of Object-Oriented Languages to a

60

Homogeneous, Concurrent Architecture", 5014:TR:82, Ph.D. Thesis,
Computer Science, Caltech, May 1982.

Lang, Dick, "Concurrent, Asynchronous Garbage Collection Among
Cooperating Processors", 4724:TR:82, Computer Science, Caltech, February
1982.

Lang, Dick, "A Distributed Class Object Processing Architecture,"
4199:DF:81, Computer Science, Caltech, February 1981.

Lewis, Robert, "Switching Dynamics", 4675:TR:81, Computer Science,
Caltech, October, 1981.

Li, Peggy, "The Tree Machine Operating System", 4618:TM:81, Computer
Science, Caltech, July 1981.

Li, Peggy, "The Serial Logarithm Machine," 4517:TR:81, MS Thesis,
Computer Science, Caltech, November 1980.

Lien, Sheue-Ling, "Towards a Theorem Proving Architecture", 4653:TR:81,
MS Thesis, Computer Science, Caltech, July 1981.

Locanthi, Bart, "The Homogeneous Machine", 3759:TR:80, Ph.D. Thesis,
Computer Science, Caltech, January 1980.

Martin, Alain J., "A Distributed Implementation Method for Parallel
Programming," Information Processing 80, S. H. Lavington (ed.), pp.
309-314., Oct. 1980. (Also available as 5045:TM:82, Computer Science,
Caltech)

Martin, Alain J., "An Axiomatic Definition of Synchronization
Primitives," Acta Informatica 16, 219-235, 1981. (Also available as
5046:TM:82, Computer Science, Caltech)

Martin, Alain J., "The Torus: An Exercise in Constructing a Processing
Surface," Proceedings of the 2nd Caltech Conference on VLSI, January
1981. (Also available as 5047:TM:82, Computer Science, Caltech)

Martin, Alin J., "Distributed Mutual Exclusion Algorithms," AJM 31,
Sept. 1982 (submitted for publication)

Martin, Alain J., "Communication in Distributed programming," Caltech
internal document, Sept. 1982

Mead, Carver and Rem, Martin, "Minimum Propagation Delays in VLSI",
Proceedings of the Second Caltech Conference on VLSI, January 19-21,
1981, also published as 4601:TM:81, Computer Science, Caltech, 1981.

Rem, Martin and Carver Mead, "A Notation for Designing Restoring Logic
Circuitry in CMOS," Proceedings of the Second Caltech Conference on
VLSI, January 19-21, 1981, also published as 4600:TM:81, Computer
Science, Caltech 1981.

Rem, Martin, "Communication in a Binary Tree, I and II, Some
observations on a tree mapping problem," internal documents, Computer
Science, Caltech, June and July 1980.
Rudin, Leonid and J.T. Kajiya, D-infinity As a Model of Omega-order

61

Intuiticnistic Logic,Abstracts of Logic Colloquium '82 & 1982 European
Summer Meeting of the ASL (Florence, August 23-28 1982).

Rudin, Leonid, "Lambda-Logic", 4521:TR:81, MS Thesis, Computer Science,
Caltech, May 1981.

Schuster, Mike, Randal E. Bryant, "MOSSIM II: A Switch-Level Simulator
for MOS LSI, User's Manual, 5033:TR:82, Computer Science, Caltech.

Seitz, Charles L, et al, "Proposed instruction set for the tree machine
processor," internal document, Computer Science, Caltech, July 1980.

Whelan, Dan, "A Rectangular Area Filling Display System Architecture",
to be presented at SIGGRAPH-82, July, 1982. Also to appear in Computer
Grahics.

Whelan, Dan, "A Versatile Ethernet Interface", 4654:TR:82, Computer
Science, Caltech, July 1981.

Whelan, Dan and Ray Eskenazi, "An Inexpensive Multibus Color Frame
Buffer", 4334:TR:81, Computer Science, Caltech, June, 1981.

Whiting, Doug, "A Self-Timed Chip Set For Multiprocessor Communication",
5000:TR:82, MS Thesis, Caltech.

Internal documents (DF) may be obtained only from the authors. Technical
Reports (TR) and Tec'.nical Memoranda (Th) can be obtained from the
Computer Science Librarian, Room 256-80, California Institute of
Technology, Pasadena, California 91125. Please identify yourself to the
librarian as a member of the ARPA comminityl

62

REFERENCES
[Backus 78]

Backus, J.
Can Programming Be Liberated from the von Neumann Style?

A Functional Style and Its Algebra of Programs.
CACM 21(8):613-641, August, 1978.

[Bernstien, Wattenburg 69]
Bernstien, A. R., Wattenburg F.
Nonstandard Measure Theory.
In Luxemburg, W. A. J., editor, Application of Model

Theory to Algebra, Analysis, and Probability, pages
171-185. Holt, Reinhart, and Winston, 1969.

[Browning, Seitz 81]
Browning, S. A., Seitz, C., L.
Communication in a Tree Machine.
In Proceedings of the Second Caltech Conference on VLSI.

Computer Science, Caltech, 1981.
[Browning 80]

Browning, Sally A.
The Tree Machine: A Highly Concurrent Computing

Environment.
Technical Report 3760, Caltech Computer Science

Department, January, 1980.

[Chen, Mead 82]
Chen, M. C. and Mead C. A.
Concurrent Algorithms as Space-time Recursion Equations.
In Proceedings of USC Workshop on VLSI and Modern Signal

Processing. Computer Science, University of Southern
California, November, 1982.

[Clark 67]
Clark, W. A.
Macromodular Computer Systems.
In AFIPS Conference Proceedings. AFIPS, 1967.

[DeBenedicitis 82]
DeBenedicitis, E.
Testing and Structured Design.
In Proceedins of the IEEE International Test Conference.

[Dijkstra 68]
Dijkstra, E. W.
Cooperting Sequential Processes.
In Genuys, F., editor, Programming Languages, pages

43-112. Academic Press, 1968.
[Habermann 69] Habermann,

A. N.
Prevention of System Deadlock.
Communications of the ACM 12(7):373-377, 1969.

63

[Johnsson et. al. 81]
Johnsson, S. Lennart, Weiser, U., Cohen, D., and Davis,
A.
Towards a Formal Treatment of VLSI Arrays.
In Proceedings of the Second Caltech Conference on VLSI,

pages . Caltech Computer Science Department, January,
1981.

[Johnsson, Cohen 82a]
Johnsson, S. L., Cohen, D.
An Algebraic Description of Array Implementations of FFT

Algorithms.
In 20th Allerton Conference on Communication, Control,

and Computing. Electrical Engineering, University of
Illinois, Urbana/Champaign, 1982.

[Johnsson, Cohen 82b]
Johnsson, S. L., Cohen, D.
A Formal Description of Array Implementations of FFT

Algorithms.
In Proceedings of the USC Workshop on VLSI and Modern

Signal Processing. Computer Science, University of
Southern California, 1982.

[Johnsson 82a]
Johnsson S.L.
VLSI Algorithms for Doolittle's, Crout's and Cholesky's

Methods.
In International Conference on Circuits and Computers

1982, ICCC82, pages 372-377. IEEE, Computer Society,
September, 1982.

[Johnsson 82b]
Johnsson L.
A Computational Array for the QR-method.
In Paul Penfield, Jr., editor, Proceeedings, Conferences

on Advanced Research in VLSI, pages 123-129. Artech
House, January, 1982.

[Johnsson 82c)
Johnsson S. L.
Pipelined Linear Equation Solvers and VLSI.
In Microelectronics '82, pages 42-46. Institution of

Electrical Engineers, Australia, May, 1982.
[Kahn 74]

Kahn, G.
The Semantics of a Simple Language for Parallel

Programming.
In Proceedings, IFIP Congress. IFIP, 1974.[KaJiya 82aJ

Kajiya, J.
Ray Tracing Parametric Patches.
Computer Graphics 16(3):245-254, July, 1982.

[KaJiya 82b]
Kajiya, J.
Rendering Stochastically Defined Surfaces.
Submitted to SIGGRAPH83.

z

64

[Kajiya 8 2c]
Kajiya, J.
Designing and Implementing an Array Theory Incorporating

Abstract Data Types.
To appear in Proceedings of APL83.

[Kung, Leiserson 801
Kung, H.T. and Leiserson, Charles E.
Algorithms for VLSI Processor Arrays.
In Introduction to VLSI Systems, pages 271-294.

Addison-Wesley, 1980.
Mead, Carver A. and Conway, Lynn A.

[Kung 801
Kung, S.Y.
VLSI Matrix Computation Array Processor.
In MIT Conference on Advanced Research in Integrated

Circuits, pages . MIT, February, 1980.
[Lauer, Campell 75]

Lauer, P. E., Campell R. H.
Formal Semantics of a Class of High-Level Primitives for

Coordinating Concurrent Processes.
Acta Informatica 5:297-332, 1975.

[Lipton 76]
Lipton, R.
The Reachability Problem Requires Exponential Space.
Technical Report Research Report 62, Department of

Computer Science, Yale University, January, 1976.
[Manna 74]

Manna, Z.

Mathematical Theory of Computation.
McGraw-Hill, 1974.

[Martin 81a]
Martin, A.
A Axiomatic Definition of Synchronization Primitives.
Acta Informatica 16:219-235, 1981.

(Martin 81b]
Martin, A.
The Torus: An Exercise in Constructing a Processing

Surrface.
In 2nd CALTECH Conference on VLSI. Computer Science,

California Institute of Technology, January, 1981.

[Martin 82a]
Martin, A.
Communication in Distributed Programming.
Technical Report, California Institute of Technology,

September, 1982.
[Martin 82b]

Martin, A.
Distributed Mutual Exclusion Algorithms.
Submitted for Publication, September 1982.

65

[Mayr 81]
Mayr, E. W.
An Algorithm for the General Petri Net Reachability

Problem.
In Proceedings of the 13th Annual ACM Symposium on Theory

of Computing, pages 238 - 246. ACM, May, 1981.

[Mead, Conway 80]
Mead, C. A., Conway L. A.
Introduction to VLSI Systems.
Addison Wesley, 1980,

[Mead, Rem 81]
Mead, C. A., Rem, M.
Minimum Propagation Delays in VLSI.
In Proceedings of the Second Caltech Conference on VLSI.

Computer Science, Caltech, 1981.
[Robinson 66]

Robinson, A.
Non-Standard Analysis (Studies in Logic and the

Foundations of Mathematics.
North-Holland, 1966.

[Scott, Strachey 711
Scott, D., Strachey, C.
Toward a Mathematical Semantics for Computer Languages.
In Fox, J., editor, Symposium on Computers and Automata,

• Wiley-Interscience, 1971.

[Seitz 70]
Seitz, C. L.
Asynchronous Machines Exhibiting Concurrency.
In Proceedings of the Project MAC Conference on

Concurrent Systems and Parallel Computation. AFIPS,
1970.

[Seitz 80]
Seitz, C. L.
System Timing.
In Introduction to VLSI Systems, chapter 7.

Addison-Wesley, 1980.
[Seitz 82a]

Seitz, C. L.
Ensemble Architectures for VLSI - A Survey and Taxonomy.
In Proceedings, Conference on Advanced Research in VLSI,

pages 130 - 135. Artech House, 1982.
[Seitz 82b]

Seitz, C. L.
The Education of VLSI Designers at the University Level.
In Compcon 82, pages 106 - 108. IEEE Computer Society,

1982.
[Sutherland, Mead 771

Sutherland Ivan, Mead Carver A.
Microelectronics and Computer Science.
Scientific American 237(3):210-229, September, 1977.

66

[Turner 77]
Turner, D. A.
A New Implementation Technique for Applicative Tauguages.
In Software Practice & Experience, pages 31 - 49. John

Wiley & Sons, 1977.
[Whelan 821

Whelan, D.
A Rectangular Area Filling Display System Architecture.
In SIGGRAPH-82. ACM, 1982.

I ATE

LMED

